首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Saikosaponins are triterpene saponins derived from the roots of Bupleurum falcatum L. (Umbelliferae), which has been traditionally used to treat fever, inflammation, liver diseases, and nephritis. It is difficult to analyze saikosaponins using HPLC-UV due to the lack of chromophores. Therefore, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) method has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we compared CAD and ELSD methods in the simultaneous analysis of 10 saikosaponins, including saikosaponins-A, -B1, -B2, -B3, -B4, -C, -D, -G, -H and -I. A mixture of the 10 saikosaponins was injected into the Ascentis® Express C18 column (100 mm × 4.6 mm, 2.7 μm) with gradient elution and detection with CAD and ELSD by splitting. We examined various factors that could affect the sensitivity of the detectors including various concentrations of additives, pH and flow rate of the mobile phase, purity of nitrogen gas and the CAD range. The sensitivity was determined based on the signal-to-noise ratio. The best sensitivity for CAD was achieved with 0.1 mM ammonium acetate at pH 4.0 in the mobile phase with a flow rate of 1.0 mL/min, and the CAD range at 100 pA, whereas that for ELSD was achieved with 0.01% acetic acid in the mobile phase with a flow rate at 0.8 mL/min. The purity of the nitrogen gas had only minor effects on the sensitivities of both detectors. Finally, the sensitivity for CAD was two to six times better than that of ELSD. Taken together, these results suggest that CAD provides a more sensitive analysis of the 10 saikosaponins than does ELSD.  相似文献   

2.
In pharmaceutical industry ultraviolet (UV) detection is often used as the preferred detection technique in HPLC analysis since most pharmaceutical compounds possess a UV-absorbing chromophore. However, in case the active pharmaceutical ingredient (API) does not have a UV-absorbing chromophore, or if some of the impurities present lack a chromophore, they will not be detected in routine HPLC analysis employing only a UV detector and alternative detection schemes have to be used. Refractive index detection or mass spectroscopy (MS) can be used but these detectors have their intrinsic weaknesses, such as lack of sensitivity or high cost. With the appearance of semi-universal techniques such as evaporative light scattering detection (ELSD), and more recent, charged aerosol detection (CAD), detection of non-UV-absorbing compounds became feasible without having to resort to such complex or costly detection methods. This paper evaluates the different performance characteristics such as sensitivity, linearity, accuracy and precision of both the ELSD and CAD detector coupled to HPLC. One disadvantage of this type of detector is the non-linear response behaviour which makes direct linear regression for making calibration curves inaccurate.  相似文献   

3.
In this study, a mass spectrometer (MS), an evaporative light scattering detector (ELSD), and a charged aerosol detector (CAD) were used to analyze an erythromycin precursor (termed 6-deoxyerythronolide B). The work highlights the capabilities of each detector to analyze a representative polyketide compound that does not possess a natural chromophore, and presents the first comparison to include a charged aerosol system. Each detector was evaluated based upon limit of detection (LOD), dynamic range, and precision in the context of polyketide analysis. Due to its low LOD, wide dynamic range, and ability to provide molecular weight information, the MS was deemed the best detection option for the analysis of low-concentration, poorly identified polyketide compounds. Alternatively, both the CAD and ELSD systems studied showed better precision and accuracy. The ELSD demonstrated the best precision at 3%, but its LOD was limited to concentrations primarily greater than or equal to 1 mg/L. The Corona CAD demonstrated a LOD (0.012 mg/L) and dynamic range comparable to mass spectroscopy and therefore serves as a more cost-efficient alternative for polyketide production schemes with low titers.  相似文献   

4.
CAD (charged aerosol detector) has recently become a new alternative detection system in HPLC. This detection approach was applied in a new HPLC method for the determination of three of the major statins used in clinical treatment—simvastatin, lovastatin and atorvastatin.The method was optimized and the influence of individual parameters on CAD response and sensitivity was carefully studied. Chromatography was performed on a Zorbax Eclipse XDB C18 (4.6 mm × 75 mm, 3.5 μm), using acetonitrile and formic acid 0.1% as mobile phase. The detection was performed using both CAD (20 pA range) and DAD (diode array detector—238 nm) simultaneously connected in series. In terms of linearity, precision and accuracy, the method was validated using tablets containing atorvastatin and simvastatin.The CAD is designated to be a non-linear detector in a wide dynamic range, however, in this application and in the tested concentration range its response was found to be perfectly linear. The limits of quantitation (0.1 μg/ml) were found to be two times lower than those of UV detection.  相似文献   

5.
6.
The increasing occurrence of toxic cyanobacterial blooms has led to a requirement for robust monitoring strategies and whilst several validated procedures have been developed these can be limited by the lack of high quality calibration standards. High quality standards must have confirmation of identity, purity and concentration by multiple methods. One aspect, purity, is rarely addressed but is essential. This is the first evaluation of the charged aerosol detector (CAD) to determine the benefits of incorporating a universal detector for more accurate purity determination of these peptides. Microcystins were detected at 5–10 ng on the column using the CAD, providing comparable quantification limits to those obtained using traditional UV detection. Purity determination of test compounds that had been partially purified, had showed that highest purity was at 238 nm > UV TIC > ESI TIC > CAD indicating that increased impurities could be detected using the CAD thus providing a more accurate indication of compound quality. Compounds purified by preparative HPLC were shown to have relative purities between 97% and 99%, however, when evaluated by CAD this dropped to 90–94% supporting the multi-detector strategy as essential for production of high quality compounds.  相似文献   

7.
The authors describe small-angle neutron scattering measurements of the screening length ζ in polyacrylamide-water gels. Although these are inhomogeneous systems, the screening length is clearly observable and is in good numerical agreement with the relation E = 3kT/4πζ3, where E is the longitudinal elastic modulus of the gel obtained from measurements of the intensity of qu-asielastically scattered light. Static light scattering observations reveal a larger-scale (ca. 30 nm) superstructure in the gel.  相似文献   

8.
9.
It is important to analyze pyrolysis liquids to evaluate the yield of valuable products as well as unfavorable by-products. This work focuses on choosing detectors for reversed-phase ultra high-performance liquid chromatography analysis of pyrolysis liquids. The linearity, sensitivity, precision, and recovery of photodiode array (PDA) detector, single-quadrupole mass spectrometer (MS), and evaporative light scattering (ELS) detector were compared for the quantitative determination of several typical compounds found in pyrolysis liquids. PDA and MS detectors were found to be suitable for the quantification of furans and phenol derivatives (furfural, vanillin, syringol), but sugars and their derivatives (glucose, xylose, levoglucosan) can be analyzed with MS or ELS detectors.  相似文献   

10.
11.
Synthesis and applications of new functional nanoparticles are topics of increasing interest in many fields of nanotechnology. Chemical modifications of inorganic nanoparticles are often necessary to improve their features as spectroscopic tracers or chemical sensors, and to increase water solubility and biocompatibility for applications in nano-biotechnology. Analysis and characterization of structured nanoparticles are then key steps for their synthesis optimization and final quality control. Many properties of structured nanoparticles are size-dependent. Particle size distribution analysis then provides fundamental analytical information. Asymmetrical flow field-flow fractionation (AF4) with multi-angle light scattering (MALS) detection is able to size-separate and to characterize nanosized analytes in dispersion. In this work we focus on the central role of AF4-MALS to analyze and characterize different types of structured nanoparticles that are finding increasing applications in nano-biotechnology and nanomedicine: polymer-coated gold nanoparticles, fluorescent silica nanoparticles, and quantum dots. AF4 not only size-fractionated these nanoparticles and measured their hydrodynamic radius (rh) distribution but it also separated them from the unbound, relatively low-Mr components of the nanoparticle structures which were still present in the sample solution. On-line MALS detection on real-time gave the gyration radius (rg) distribution of the fractionated nanoparticles. Additional information on nanoparticle morphology was then obtained from the rh/rg index. Stability of the nanoparticle dispersions was finally investigated. Aggregation of the fluorescent silica nanoparticles was found to depend on the concentration at which they were dispersed. Partial release of the polymeric coating from water-soluble QDs was found when shear stress was induced by increasing flowrates during fractionation.  相似文献   

12.
A simple and rapid detection method of oligosaccharides using high-performance liquid chromatography with a charged aerosol detection (HPLC-CAD) was studied. The direct detection of a sialylglycopeptide (SGP) derived from egg yolk was accomplished by HPLC-CAD using an amido-silica column, and its limit of detection was 0.40 pmol [signal-to-noise ratio (S/N) = 3]. The sensitivity of this method was lower than that of the fluorescence detection; however, the method showed approximately 5 times higher sensitivity than that using the conventional UV absorbance detection. Furthermore, this method was used for the analysis of the acid hydrolysis products of SGP. Monosialo- and asialo-oligosaccharides as well as free sialic acid were detected without using fluorescent derivatization. These results indicate that the present method is a new tool for the analysis of oligosaccharides.  相似文献   

13.
14.
Summary A review is made of the existing theoretical expressions, describing the change of the scattered light intensity and the birefringence by application of an electrical field to a colloid solution.Furthermore, the geometrical functions for disc-shaped particles are calculated in this article for the case of electric light scattering and are. presented graphically. In addition, expressions are derived for the average value of the electrical polarizability () for the case of polydisperse solutions.
Zusammenfassung Es wird ein überblick über die existierenden theoretischen Beziehungen gegeben, die die Änderung der Intensität des Streulichtes und der Doppelbrechung von Kolloidsuspensionen im elektrischen Feld beschreiben.Weiterhin sind die geometrischen Funktionen für scheibchenförmige Teilchen in dieser Arbeit für den Fall der elektrooptischen Lichtstreuung berechnet und grafisch dargestellt. Außerdem werden Beziehungen für den Mittelwert der elektrischen Polarisierbarkeit () für den Fall polydisperser Suspensionen abgeleitet.


With 1 figure and 1 table  相似文献   

15.
A microemulsion of decane droplets stabilized by a nonionic surfactant film is progressively charged by substitution of a nonionic surfactant molecule by a cationic surfactant. We check that the microemulsion droplets remain identical within the explored range of volume fraction (0.02-0.18) and of the number of charges per droplet (0-40). We probe the dynamics of these microemulsions by dynamic light scattering. Despite the similar structures of the uncharged and charged microemulsions, the dynamics are very different. In the neutral microemulsion, the fluctuations of polarization relax, as is well-known, via the collective diffusion of the droplets. In the charged microemulsions, two modes of relaxation are observed. The fast one is ascribed classically to the collective diffusion of the charged droplets coupled to the diffusion of the counterions. The slow one has, to our knowledge, not been observed previously neither in similar microemulsions nor in charged spherical colloids. We show that the slow mode is also diffusive and suggest that its possible origin is the relaxation of local charge fluctuations via the local exchange of droplets bearing different numbers of charges. The diffusion coefficient associated with this mode is then the self-diffusion coefficient of the droplets.  相似文献   

16.
17.
The need for a rapid and sensitive chromatographic technique for analyzing lipid molecular species, has led to the development of an high-temperature micro liquid chromatographic system (HTLC) coupled to an evaporative light scattering detector. The increased diffusion coefficients and reduced viscosity at higher temperatures allowed lipids to be analyzed rapidly with solvents differing from those classically used in lipids chemistry. Hypercarb, a reverse phase material, was used for its different properties including heat resistance in high temperature micro HPLC. We have investigated the temperature effect on kinetic performances in HTLC, established pure solvents eluent strength at high temperature and studied different classes of lipids with seven pure solvents. We found that it was possible to use alcohols solvents in the mobile phase to elute lipids without the use of chlorinated solvents. A quick and simple method was developed to analyze a complex lipid simple, ceramide type III and type IV.  相似文献   

18.
19.
A technique of using size exclusion chromatography (SEC) with the Corona charged aerosol detector (CAD) was developed and evaluated in comparison with refractive index (RI) and evaporative light scattering detection (ELSD) for fast screening of polyethylene glycol (PEG), a polymer used in preparing pegylated pharmaceutical compounds. These detection techniques were used in the analysis of multiple lots of PEG reagents. CAD was found to provide more accurate impurity and polydispersity profiles of PEG reagents that better differentiate their quality, while RI was not suitable for this application due to its low sensitivity and ELSD led to underestimation of the impurity and polydispersity. The accuracy of polydispersity determination by SEC-CAD was validated against a commercial reference standard of known polydispersity. The SEC-CAD technique and the observed differences between the three detectors can also be applied to polymer analysis in general.  相似文献   

20.
In order to develop a highly reliable method of routine charged particle activation analysis on a commercial basis by request of an outside company, (1) a new target holder was developed for brittle or low melting-point samples, (2) some modifications and improvements were introduced in the chemical separation, and (3) the reliability of the results was further examined. Oxygen, nitrogen, carbon, and boron in a greater variety of matrices have thus become analyzable with a higher reliability and efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号