首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new chloride-dimethylsulfoxide-ruthenium(III) complex with nicotine trans-[RuIIICl4(DMSO)[H-(Nicotine)]] (1) and three related iridium(III) complexes; [H-(Nicotine)]trans-[IrIIICl4(DMSO)2] (2), trans-[IrIIICl4(DMSO)[H-(Nicotine)]] (3) and mer-[IrIIICl3(DMSO)(Nicotine)2] (4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction (1, 2, and 4). Protonated nicotine at pyrrolidine nitrogen is present in complexes 1 and 3 while two neutral nicotine ligands are observed in 4. In these three inner-sphere complexes coordination occurs through the pyridine nitrogen. Moreover, in the outer-sphere complex 2, an electrostatic interaction is observed between a cationic protonated nicotine at the pyrrolidine nitrogen and the anionic trans-[IrIIICl4(DMSO)2]¯ complex.  相似文献   

2.
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state.  相似文献   

3.
Two polar phosphinoferrocene ligands, 1′-(diphenylphosphino)ferrocene-1-carboxamide (1) and 1′-(diphenylphosphino)ferrocene-1-carbohydrazide (2), were synthesized in good yields from 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) via the reactive benzotriazole derivative, 1-[1′-(diphenylphosphino)ferrocene-1-carbonyl]-1H-1,2,3-benzotriazole (3). Alternatively, the hydrazide was prepared by the conventional reaction of methyl 1′-(diphenylphosphino)ferrocene-1-carboxylate with hydrazine hydrate, and was further converted via standard condensation reactions to three phosphinoferrocene heterocycles, viz 2-[1′-(diphenylphosphino)ferrocen-1-yl]-1,3,4-oxadiazole (4), 1-[1′-(diphenylphosphino)ferrocen-1-carbonyl]-3,5-dimethyl-1,2-pyrazole (5), and 1-[1′-(diphenylphosphino)ferrocene-1-carboxamido]-3,5-dimethylpyrrole (6). Compounds 1 and 2 react with [PdCl2(cod)] (cod = η22-cycloocta-1,5-diene) to afford the respective bis-phosphine complexes trans-[PdCl2(L-κP)2] (7, L = 1; 8, L = 2). The dimeric precursor [(LNC)PdCl]2 (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1) is cleaved with 1 to give the neutral phosphine complex [(LNC)PdCl(1P)] (9), which is readily transformed into a ionic bis-chelate complex [(LNC)PdCl(12O,P)][SbF6] (10) upon removal of the chloride ligand with Ag[SbF6]. Pyrazole 5 behaves similarly affording the related complexes [(LNC)PdCl(5P)] (12) and [(LNC)PdCl(52O,P)][SbF6] (13), in which the ferrocene ligand coordinates as a simple phosphine and an O,P-chelate respectively, while oxadiazole 4 affords the phosphine complex [(LNC)PdCl(4P)] (11) and a P,N-chelate [(LNC)PdCl(42N3,P)][SbF6] (14) under similar conditions. All compounds were characterized by elemental analysis and spectroscopic methods (multinuclear NMR, IR and MS). The solid-state structures of 1⋅½AcOEt, 2, 7⋅3CH3CN, 8⋅2CHCl3, 9⋅½CH2Cl2⋅0.375C6H14, 10, and 14 were determined by single-crystal X-ray crystallography.  相似文献   

4.
Four new coordination complexes with azole heterocycle ligands bearing acetic acid groups, [Co(L1)2]n (1), [CuL1N3]n (2), [Cu(L2)2·0.5C2H5OH·H2O]n (3) and [Co(L2)2]n (4) (here, HL1=1H-imidazole-1-yl-acetic acid, HL2=1H-benzimidazole-1-yl-acetic acid) have been synthesized and structurally characterized. Single-crystal structure analysis shows that 3 and 4 are 2D complexes with 44-sql topologies, while another 2D complex 1 has a (43)2(46)-kgd topology. And 2 is a 3D complex composed dinuclear μ1,1-bridging azido CuII entities with distorted rutile topology. The magnetic properties of 1 and 2 have been studied.  相似文献   

5.
Three novel zinc coordination polymers (NH4)n[Zn(Hida)Cl2]n (1), [Zn(ida)(H2O)2]n (2), [Zn(Hida)2]n·4nH2O (3) (H2ida=iminodiacetic acid) and a monomeric complex [Zn(ida)(phen)(H2O)]·2H2O (4) (phen=1,10-phenanthroline) have been synthesized and characterized by X-ray diffraction methods. 1 and 2 form one-dimensional (1-D) chain structures, whereas 3 exhibits a three-dimensional (3-D) diamondoid framework with an open channel. The mononuclear complex 4 is extended into a 3-D supramolecular architecture through hydrogen bonds and π-π stacking. Interestingly, cyclic nonplanar tetrameric water clusters are observed that encapsulated in the 3-D lattice of 4. Based on 1H and 13C NMR observations, there is obvious coordination of complex 2 in solution, while 1 and 3 decompose into free iminodiacetate ligand. Monomer [Zn(ida)(H2O)3] (5) is considered as a possible discrete species from 2. These coordination polymers can serve as good molecular precursors for zinc oxide.  相似文献   

6.
The preparation of iodo acid [closo-1-CB9H8-1-COOH-10-I] (1) is optimized and scaled from 1 to 40 g of B10H14. The improved preparation of the [arachno-6-CB9H13-6-COOH] (5) uses four times smaller volume and can be run conveniently in up to 40 g scale in a 3-L vessel. The optimized oxidation of 5 to [closo-2-CB9H9-2-COOH] (4) requires less oxidant, 12 times smaller volume, and significantly shorter reaction time. The overall yields of the iodo acid 1 as the [NMe4]+ salt are typically 8-10% (10-12 g) for 40 g of B10H14. The iodo acid 1 was transformed to amino acid 8, then to dinitrogen acid 10, and finally to sulfonium acid 2[3] in overall yield of about 13%. The search for a more efficient phosphine ligand for the Pd-catalyzed amination process was not fruitful. Three routes to the sulfonium acid 2[n] were investigated, and the best yield of about 47% was obtained for Cs2CO3-assisted cycloalkylation. Liquid crystalline ester of acid 2[3] and 4-butoxyphenol was prepared and investigated.  相似文献   

7.
Cadmium(II) complexes of 3-hydroxypicolinic acid, namely [CdI(3-OHpic)(3-OHpicH)(H2O)]2 (1), [Cd(3-OHpic)2(H2O)2] (2) and [Cd(3-OHpic)2]n (3) were prepared and characterized by spectroscopic methods (IR, NMR) and their molecular and crystal structures were determined by X-ray crystal structure analysis. Complexes 1 and 2 were prepared in similar reaction conditions using different cadmium(II) salts: cadmium(II) iodide and cadmium(II) acetate dihydrate, respectively, while 3 was prepared by recrystallization of 2 from N,N-dimethylformamide solution. Various coordination modes of 3-OHpicH in 13 were established in the solid state: bidentate N,O-chelated mode in 1 and 2, monodentate mode through the carboxylate O atom from zwitterionic ligand in 1 and bidentate N,O-chelated and bridging mode in 3. In the DMF solution of all prepared complexes, only monodentate mode of 3-OHpicH binding to cadmium(II) through the carboxylate O atom was established by 1H, 13C, 15N and 113Cd NMR spectroscopy.  相似文献   

8.
A series of 3D heteropolymolybdates, (NH4)2{[M(H2O)3]2[TeMo6O24]}·H2O (M=Mn(1), Co(2), Ni(3), Cu(4), and Zn(5)) and [Ln(H2O)4]2[TeMo6O24]·3H2O (Ln=La(6), Ce(7), and Nd(8)), has been isolated from hydrothermal reactions and characterized by elemental analyses, IR spectra, X-ray crystallography and magnetic properties. Single-crystal X-ray diffraction analysis reveals that compounds 1-8 possess unusual (3,6)-connected networks constructed from Anderson-type anions [TeMo6O24]6− and transion metal or rare-earth metal cations. Compounds 1-5 are of highly symmetrical structures with pyrite-like topology in which [TeMo6O24]6− anions act as 6-connected sites and transition metal cations act as 3-connected sites. Compounds 6-8 crystallize in symmetrical space groups lower than that of 1-5 exhibiting rutile-like topology with [TeMo6O24]6− anions acting as 6-connected sites and rare-earth metal cations acting as 3-connected sites. The magnetic properties of 1-4 are also presented.  相似文献   

9.
A series of lanthanide(III) complexes with chelidamic acid ligand, [Ln(C7H2NO5)·3H2O]n·nH2O (Ln = La (1), Y (2), Sm (3), and Nd (4)), [Gd2(C7H2NO5)3·4H2O]n·2nH2O (5) and [Ce(C7H2NO5)·1.5H2O]n (6), have been synthesized by hydrothermal method and structurally characterized by single-crystal X-ray diffraction. Complexes 14 are isostructural and possess 2D framework. Complex 5 contains two different Gd(III) ions linked through carboxylate group to form a 2D framework. Complex 6 exhibits a (44) topology 2D network. The variable-temperature magnetic properties of 3 and 5 have been investigated. Furthermore, the photoluminescent properties of 1, 2, 3, and 5 at room temperature were also studied.  相似文献   

10.
Yu Liu 《Tetrahedron》2003,59(40):7967-7972
A series of novel double-armed calix[4]arene derivatives, i.e. 5,11,17,23-tetra-tert-butyl -25,27-bis[2-[(2-hydroxy-5-(4-nitroazo)benzylidene)amino]ethoxy]-26,28-dihydroxy-calix[4]-arene (4), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(2-nitroazo)benzylidene) amino]ethoxy]-26,28-dihydroxycalix[4]arene (5), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(4-chloroazo)benzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (6), have been synthesized as an selective chromoionophore for Na+. The complexation behavior of ligands 4-6 with alkali metal ions Na+, K+, Rb+and Cs+ has been evaluated by using UV-Vis spectrometry in CH3CN-H2O (99:1/V:V) solution at 25°C. The UV-Vis spectra show that the complexation of 4-6 with Na+exhibits obvious bathochromic shifts (λmax 379→480 nm) and there is a unique color change in the solution from yellow to red upon complexation. The binding constants for Na+ are higher than that of other alkali metal ions, giving the highest cation selectivity up to 7 for Na+/K+. The binding ability and photophysical behavior of alkali cations by calix[4]arene derivatives 4-6 are discussed from the point of view of substituted effects at the lower rim of parent calix[4]arene and size-fit concept between host calix[4]arenes and guest cations.  相似文献   

11.
Two neutral ligands, L1 · 2H2O and L2 · H2O, and seven complexes, [Cu(pmb)2(L1)] (1), [Cu(pmb)2(L2)] (2), [Cu(Ac)2(L2)] · 4H2O (3), [Cu(4-aba)2(L2)] (4), [Ag(4-ts)(L1)(H2O)] (5), [Ag2(epes)2(L1)] · 2H2O (6), [Ag(1,5-nds)0.5(L2)] · 0.5C2H5OH · H2O (7) [where L1 = 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole); L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole), pmb = p-methoxybenzoate anion; Ac = acetate anion; 4-aba = 4-aminobenzoate anion; 4-ts = p-toluenesulfonate anion; epes = N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonate) anion; 1,5-nds = 1,5-naphthalenedisulfonate anion], have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The L1 and L2 ligands in compounds 17 act as bridging ligands, linking metal ions into chain structures. The chains in compounds 3, 4 and 6 interlace with each other by hydrogen bonds to generate 3D supramolecular structures. In compound 5, π–π interactions between adjacent L1 ligands hold the chains to a supramolecular layer. In compound 7, the sulfonate anions act as counterions in the framework. The thermal stabilities of 3, 6 and 7, and the luminescent properties for 57 in the solid states are also discussed.  相似文献   

12.
A bioinorganic approach into the problem of the isomorphous substitution of calcium(II) by lanthanide(III) ions in biological systems is discussed. Reactions of malonamic acid (H2malm) with CaII and NdIII sources under similar conditions yielded the compounds [Ca(Hmalm)2]n (1), [Nd(Hmalm)2(H2O)2]n(NO3)n (2) and [Nd(Hmalm)2(H2O)2]nCln·2nH2O (3·2nH2O). Their X-ray crystal structure data show that the malonamate(-1) ligand presents two different ligation modes and coordinates through the two carboxylate and the amide-O atoms, thus bridging three CaII ions in 1 and two NdIII ions in 2 and 3·2nH2O. Complex 1 is a 3D coordination polymer based on neutral repeating units, whereas 2 and 3·2nH2O are 1D coordination polymers based on the same cationic repeating unit. Hydrogen bonding interactions further stabilize the 3D framework structure of 1 and assemble the 1D chains of 2 and 3·2nH2O into 3D networks. The three complexes were characterized spectroscopically (IR, far-IR, and Raman) and the thermal decomposition of 2 and 3·2nH2O was monitored by TG/DTA and TG/DTG measurements. Variable-temperature magnetic susceptibility data for 2 are also reported. The bioinorganic chemistry relevance of our results is discussed.  相似文献   

13.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   

14.
Fluorotitanates (LH)2[TiF6nH2O (1: R = pyridine, n = 1, 2: R = 2-picoline, n = 2, 3: R = 2,6-lutidine, n = 0, 4: R = 2,4,6-collidine, n = 0) and (LH)[TiF5(H2O)] (3a: L = 2,6-lutidine) have been synthesized by the reaction of pyridine or corresponding methyl substituted pyridines and titanium dioxide dissolved in hydrofluoric acid. The crystal structures of ionic compounds 1, 2, 3, 3a and 4 have been determined by single-crystal X-ray diffraction analysis. The hydrogen bonding led to the formation of discrete (LH)2[TiF6] units (4), chains (1-3), and layers (3a). The additional π-π interactions present in 1, 2, and 4 results in chain structures of 1 and 4 and in a layer structure of 2. The [TiF6]2− and [TiF5(H2O)] anions were observed by 19F NMR spectroscopy in aqueous solutions of 1, 2, 3, 3a and 4.  相似文献   

15.
A PNA monomer containing thymine as nucleobase (1) was synthesized, characterized and coupled to the pyrazolyl containing ligand 3,5-Me2pz(CH2)2N((CH2)3COOH)(CH2)2NHBoc (2) and to a modified cysteine S-(carboxymethyl-pentafluorphenyl)-N-[(trifluor)carbonyl]-l-cysteine methyl ester (3) yielding the bifunctional chelators 6 and 7, respectively. Reactions of 6 and 7 with the Re(I) tricarbonyl starting material [Re(CO)3(H2O)3]Br afforded the complexes fac-[Re(CO)33-6)]+ (8) and fac-[Re(CO)33-7)] (9), respectively. The identity of 8 and 9 has been established based on IR spectroscopy, elemental analysis, ESI-MS spectrometry and HPLC. The multinuclear NMR spectroscopy (1H, 13C, g-COSY, g-HSQC) has also been very informative in the case of complex 8, showing the presence of rotamers in solution. For 9 the NMR spectrum was too complex due to the presence of rotamers and diastereoisomers. The radioactive congeners of complexes 8 and 9, fac-[99mTc(CO)33-6)]+ (8a) and fac-[99mTc(CO)33-7)] (9a), have been prepared by reacting the precursor fac-[99mTc(CO)3(H2O)3]+ with the corresponding ligands being their identity established by comparing their HPLC chromatograms with the HPLC of the rhenium surrogates.  相似文献   

16.
The reaction of RN(CH2CH2OH)CHR1CR2R3OH (1-8) with a stoichiometric amount of tetrachloro(bromo)germane leads to the corresponding RN(CH2CH2O)(CHR1CR2R3O)GeHal2 (9-21). Difluorenylgermocane 22 was prepared by treatment of diethoxydifluorenylgermane with N-methyldiethanolamine. Different dialkanolamines were found to be successive precursors of dimethylgermocanes, RN(CH2CH2O)(CHR1CR2R3O)GeMe2 (23-26). The chemical properties of simple and easy to access germocanes RN(CH2CH2O)2GeX2 [X = OH, Br (28), Cl (29)] were studied and the difluoro (27), haloalkoxy (30-32), and dialkoxy (33, 34) derivatives were prepared. The structures of the compounds 16, 20-22, and 26 were confirmed by X-ray diffraction and the structural features in solution of 23 and 26 were studied by NMR spectroscopy (NOEs). The relationship between the nature of substituents at different positions of the germocane skeleton and the strength of the intramolecular Ge ← N bond is discussed.  相似文献   

17.
We suggest that singlet molecular oxygen [1O2 (1Δg)] is formed upon irradiation of indigo 1 [in air or O2-saturated DMSO and DMSO (0.5% H2SO4)] and indigo carmine 2 [in air or O2-saturated CH3OH, D2O, and 1-butyl-3-methylimidazolium tetrafluoroborate (BmIm-BF4)]. The quantum yield for production of 1O2 is estimated to be 0.6 for 1 and 0.3-0.5 for 2. The rates of reaction of 1O2 with 1 and 2 were determined by monitoring the emission of 1O2 at 1270 nm over time. Low molar absorptivities (at 532 nm) and rapid physical quenching caused by 1 and 2 limit their utility as 1O2 photosensitizers in solution. Compounds 1 and 2 degrade slowly during the photolysis due to a self-sensitized (type I or II) photooxidation reaction. Oxidative cleavage of 1 by singlet oxygen and superoxide, and 2 by superoxide has been noted before (Kuramoto, N.; Kitao, T. J. Soc. Dyers Color. 1979, 95, 257-261; Kettle, A. J.; Clark, B. M.; Winterbourn, C. C. J. Biol. Chem. 2004, 279, 18521-18525).  相似文献   

18.
Five new lanthanide supramolecular complexes, namely, [Sm(oqa)2(H2O)4]2 (ClO4)2·(bpy)2 (1), [Ln(oqa)3]·2H2O [Ln=Sm(2), Gd(3)] and [Ln(oqa)2(NO3)(H2O)] [Ln=Pr(4), Eu(5)] (oqa=4-oxo-1(4H)-quinolineacetate, bpy=4,4′-bipyridine), have been synthesized under hydrothermal conditions. These complexes exhibit three typical structure features. Complex 1 possesses a dimeric structure, which is further connected together through hydrogen bonds and π-π attractions, forming a 3D supramolecular framework. Compounds 2-3 are isomorphous and contain 1D ring-like chains, which are further interconnected by the oqa ligands into 2D sheet-like structures. 4 and 5 exhibit eight-connected 3D network of 424·64-bcu topology. The various coordination modes of carboxylate ligands and the selection of the counterions have clearly affected the topological structures. Furthermore, the solid-state luminescent properties of complexes 1, 2 and 5 were investigated at room temperature and they show intense, characteristic emissions in the visible region.  相似文献   

19.
The flexible ditopic ligand 1,2-bis(3-(4-pyridyl)pyrazol-1-yl)ethane (L4Et) displays remarkable versatility in the complexes that it forms with transition metals with products ranging from 1D chains to interpenetrating 3D networks. The L4Et ligand itself crystallises in the space group P21, adopting a helical twist, although it is found in a variety of other conformations in its complexes. Coordination polymers containing the L4Et ligand vary from almost straight, parallel 1D chains of [Ag2(L4Et)2(ClO4)2(DMF)]·DMF (1), through interdigitating helical complexes containing tetrahedral Zn(II), [Zn(NCS)2(L4Et)]·DMF·H2O (2) to 2D sheets of [Cu(L4Et)2(H2O)2](PF6)2·xH2O (3) and the three-fold interpenetrating 3D network of [Co(L4Et)2(NCS)2] (4). The 3D network adopts an unusual 3D 4-connected dmp (65.8) topology. Dimensionality can be limited by the use of chelating co-ligands, demonstrated by the formation of the dinuclear complex [{Cu(py-2,6-CO2)(H2O)}2(L4Et)] (5).  相似文献   

20.
Reactions of different metal salts with 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-abpt) gave rise to five new complexes, namely [Cu4(CN)4(3-abpt)2]n (1), [CuBr(3-abpt)]n (2), [CuI(3-abpt)]n (3), [Cu3I3(3-abpt)]n (4) and [Cu(3-abpt)(SO4)(H2O)]n (5). Compounds 1, 3, 4 and 5 are all 2D structures. Compound 1 is a double-layered polymer with an uncommon 3-nodal 3-connected (103)(102.4)4 network, 3 shows a 2D square layered structure, 4 is also a double-layered polymer with 2-nodal 4-connected (3.4.5.62.7)2(3.42.52.7) network and 5 is a 2D structure which is ultimately stacked with an ABAB repeat pattern. Compound 2 is a 1D coordination polymer which exhibits a ladder-like network. The photoluminescence of 1-2 has also been investigated. The long emission lifetimes of 1-2 could be assigned to metal-to-ligand charge transfer triple excited states [MLCT].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号