首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
The selective synthesis of heteroleptic (heteronuclear) sandwich-type lanthanide phthalocyanines has been accomplished. Double-decker complexes BuPcLnPc, and BuPcLnPcCl (Ln = Lu, Eu; BuPc = 2,3,9,10,16,17,23,24-octabutylphthalocyaninate; Pc = phthalocyaninate, ClPc = 2,3,9,10,16,17,23,24-octachlorophthalocyaninate) were obtained in good yields by a direct interaction of metal-free ligand BuPcH2 with the monophthalocyanines PcLnOAc or ClPcLnOAc. Heteronuclear triple-decker phthalocyanines PcEuRPcLuRPc, ClPcEuRPcLuRPc and BuPcEuRPcLuRPc (RPc = BuPc, tBuPc; tBuPc = 2(3),9(10),16(17),23(24)-tetra-tert-butylphthalocyaninate) were obtained from the corresponding mono-(PcEuOAc, ClPcEuOAc, BuPcEuOAc) and bisphthalocyanines (RPc2Lu) under similar conditions.  相似文献   

2.
The [Rh(acac)(CO)(L)] (acac = acetylacetonato; L1 = 1,3-bis-(2,6-diisopropylphenyl)imidazolinylidene and L2 = 1,3-bis-(2,4,6-trimethylphenyl)imidazolinylidene) complexes were prepared by the action of the parent carbene on [Rh(acac)(CO)2] in THF. The crystal structure characterisation of [Rh(acac)(CO)(L1)] revealed a slightly distorted square planar geometry with the carbene ligand orientated almost perpendicular to the equatorial plane; an elongated trans Rh-O bond of 2.0806(18) Å reflecting the considerable trans-influence of the carbene ligand. By measuring the CO stretching frequencies in a range of [Rh(acac)(CO)(L)] complexes (L = CO, L1, L2, PPh3, PnBu3, P(O-2,4-tBu2-Ph)3) the following electron donating ability series was established: L1 ∼ L2 ∼ PnBu3 > PPh3 > P(O-2,4-tBu2-Ph)3 > CO; indicating the carbenes investigated in this study to have a similar electronic cis-influence as trialkyl phosphines. Both complexes do not display hydroformylation activity towards 1-hexene in the absence of added phosphine or phosphite ligands under the conditions investigated (P = 60; T = 85 °C). In the presence of a phosphine or phosphite ligand the resulting hydroformylation catalysis was identical to that observed for [Rh(acac)(CO)2] and the corresponding ligand and subsequent high-pressure 31P NMR studies confirmed substitution of the carbene ligand under these conditions.  相似文献   

3.
Four complexes: [Bu2(L1)SnOSn(L1)Bu2]2 (1), [Bu2(L2)SnOSn(L2)Bu2]2 (2), [Bu2(L3)SnOSn(L3)Bu2]2 (3), and [Bu2(L4)SnOSn(L4)Bu2]2 (4), (HL1 = 2-(4-methylbenzoyl)benzoic acid, HL2 = 2-(2,4-diethylbenzoyl)benzoic acid, HL3 = 2-(4-chlorobenzoyl)benzoic acid, HL4 = 2-(4-isopropylbenzoyl)benzoic acid) have been prepared and structurally characterized by means of elemental analysis and vibrational, 1H NMR and FT-IR spectroscopies. The crystal structures of all complexes have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement. Each structure is centro-symmetric and features a central rhombus Sn2O2 unit with two additional tin atoms linked at the O atoms. Complex 1 exhibited good antibacterial and antitumor activities and have a potential to be used as drugs.  相似文献   

4.
Capillary zone electrophoresis (CZE) has been employed to characterize nanometer-sized thiolated α-cyclodextrin-capped gold nanoparticles (α-CD-S-AuNPs). The addition of tetrabutylammonium (Bu4N+) ions to the run buffer greatly narrows the migration peak of α-CD-S-AuNP. The optimal run buffer was determined to be 10 mM Bu4N+ in 30 mM phosphate buffer at pH 12 and an applied voltage of 15 kV. The effect of various tetraalkylammonium ions on the peak width and electrophoretic mobility (μe) of α-CD-S-AuNP was studied in detail. Bu4N+ ions assist in inter-linking the α-CD-S-AuNPs and narrowing the migration peak in CZE. This observation can be explained by the fact that each Bu4N+ ion can simultaneously interact with several hydrophobic cavities of the surface-attached α-CDs on AuNPs. The TEM images show that α-CD-S-AuNPs with Bu4N+ are linked together but in the absence of Bu4N+, they are more dispersed. The migration mechanism in CZE is based on the formation of inclusion complexes between Bu4N+ and α-CD-S-AuNPs which induces changes in the charge-to-size ratio of α-CD-S-AuNPs and μe. An inverse linear relationship (r2 > 0.998) exists between the μe and size of α-CD-S-AuNPs in the core range 1.4–4.1 nm. The CZE analyses are rapid with migration time less than 4 min. A few nanoliters of each of the α-CD-S-AuNP samples were injected hydrodynamically at 0.5 psi for 5 s. Our work confirms that CZE is an efficient tool for characterizing the sizes of α-CD-S-AuNPs using Bu4N+ ions.  相似文献   

5.
3-Fluoropyridine was deprotonated on treatment with 1/3 equiv of Bu3MgLi in THF at −10 °C. The lithium arylmagnesate formed was either trapped with electrophiles or involved in a palladium-catalyzed cross-coupling reaction with 2-bromopyridine. The use of a less nucleophilic lithium-magnesium-dialkylamide, (TMP)3MgLi, allowed the reaction of 3-fluoroquinoline, giving the 2,2′-dimeric derivative. 2-Fluoropyridine and 2,6-difluoropyridine were deprotonated using 1/3 equiv of the highly coordinated magnesate Bu4MgLi2 in THF at −10 °C in the presence of a substoichiometric amount of 2,2,6,6-tetramethylpiperidine. 1,3-Difluorobenzene reacted similarly when treated with Bu3MgLi; the reactivity of the base proved to be enhanced by the presence of TMEDA.  相似文献   

6.
Furan was deprotonated on treatment with 1/3 equiv of Bu3MgLi in THF at rt. The lithium arylmagnesate formed was either trapped with electrophiles or involved in a palladium-catalyzed cross-coupling reaction with 2-bromopyridine. The highly coordinated magnesate Bu4MgLi2 (1/3 equiv) proved to be a better deprotonating agent than Bu3MgLi; the monitoring of the reaction using NMR spectroscopy showed that the deprotonation of furan at rt required 2 h whereas the subsequent electrophilic trapping was instantaneous. The method was extended to benzofuran, allowing its functionalization at C2 in high yields. The deprotonation of 2-methylfuran and lithium furfurylalkoxide at C5 turned out to be difficult, requiring either long reaction times or higher temperatures.  相似文献   

7.
4-Chloropyridine was deprotonated on treatment with 1/3 equiv of the highly coordinated magnesate Bu3(TMP)MgLi2 in THF at −10 °C, as evidenced by trapping with I2. The use of Bu(TMP)2MgLi in Et2O allowed the reaction of 2-chloropyridine, giving the 3-functionalized derivative as the main product. Mixtures of 3- and 4-functionalized derivatives were obtained when 2,6-dichloropyridine was involved in the reaction. Performing the reaction on 3-chloropyridine with lithium magnesates in THF, either the 4,4′-dimer or the 4-iodo derivative was formed after quenching by I2, the former using 1/3 equiv of Bu2(TMP)MgLi and the latter using 1 equiv of (TMP)3MgLi. Similar results were observed with 3,5-dichloropyridine, 2,5-dichloropyridine and 3-chloro-2-fluoropyridine. 1,2-Migration of the lithium arylmagnesate formed by deprotonation was proposed to justify the dimers formation.  相似文献   

8.
The synthesis of [TiInd(NCtBu2)Cl2] and the applications of [TiCp(NCtBu2)Cl2] (Cp=Ind, Cp*, Cp) as ethylene and propylene homopolymerisation catalysts, as well as its behaviour as catalysts of ethylene and 10-undecen-1-ol copolymerisation are described. The optimisation of the catalytic reactions showed that all compounds are very active homopolymerisation catalysts, particularly [TiInd(NCtBu2)Cl2] that gives 123.37 × 106 g/(molTi [E] h) and 50.77 × 106 g/(molTi [P] h) of linear polyethylene and atatic polypropylene, respectively. The less active homopolymerisation catalyst, [TiCp(NCtBu2)Cl2], is the most effective ethylene/10-undecen-1-ol copolymerisation catalyst, leading to the highest degree of polar monomer incorporation. The polymers obtained were characterised by NMR and DSC. The molecular structures of [TiCp(NCtBu2)Cl2] (Cp=Ind, Cp*) were determined by X-ray diffraction studies.  相似文献   

9.
The organotin flufenamates [Me2(flu)SnOSn(flu)Me2]2 (1), [Bu2(flu)SnOSn(flu)Bu2]2 (2) and [Bu2Sn(flu)2] (3) have been prepared and structurally characterized by means of vibrational and NMR (1H, 13C and 119Sn) spectroscopy. The crystal structure of [Me2(flu)SnOSn(flu)Me2]2 (1) has been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement. The structure is centro-symmetric and features a central rhombus Sn2O2 unit with two additional tin atoms linked at the O atoms. Six-coordinated tin centers are present in the dimer distannoxane. This structure is self-assembled via π → π and C-H → π stacking interactions. Flufenamic acid and flufenamates were evaluated for antiproliferative activity in vitro. Among the compounds tested [Bu2(flu)SnOSn(flu)Bu2]2 (2) and [Bu2Sn(flu)2] (3) exhibited high cytotoxic activity against the cancer cell line A549 (non-small cell lung carcinoma).  相似文献   

10.
Oxotungsten(VI) complex cis-[WO(LtBu)Me2] (LtBu = methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenolate) dianion) was prepared by the transmetallation reaction of [WO(LtBu)Cl2] (either cis or trans isomer) with methyl magnesium iodide. This unexpectedly stable dialkyl complex can be activated by Et2AlCl to catalyze the ring-opening metathesis polymerization of norbornene.  相似文献   

11.
Treatment of triethylaluminum with 3,5-diphenylpyrazole in a 2:1 stoichiometry afforded the ethyl-bridged complex Et2Al(μ-Ph2pz)(μ-Et)AlEt2 (79%) as a colorless crystalline solid. Treatment of tri-n-propylaluminum with 3,5-di-tert-butylpyrazole in a 2:1 stoichiometry afforded the n-propyl-bridged complex (nPr)2Al(μ-tBu2pz)(μ-nPr)Al(nPr)2 (63%) and the dimeric complex [(nPr)2Al(μ-tBu2pz)]2 (3%), respectively, as colorless crystalline solids. Treatment of tri-n-propylaluminum (1 equiv.) or triisobutylaluminum (1 or 2 equiv.) with 3,5-di-tert-butylpyrazole afforded exclusively the dimeric complexes [(nPr)2Al(μ-tBu2pz)]2 (68%) or [(iBu)2Al(μ-tBu2pz)]2 (96%), respectively, as colorless crystalline solids. The solid state structures of Et2Al(μ-Ph2pz)(μ-Et)AlEt2 and (nPr)2Al(μ-tBu2pz)(μ-nPr)Al(nPr)2 consist of 3,5-disubstituted pyrazolato ligands with a di-n-alkylalumino group bonded to each nitrogen atom. An ethyl or n-propyl group acts as a bridge between the two aluminum atoms. The kinetics of the bridge-terminal exchange was determined for the bridging n-alkyl complexes by 13C NMR spectroscopy, and afforded ΔH = 1.5 ± 0.1 kcal/mol, ΔS = −46.8 ± 39.0 cal/K mol, and for Et2Al(μ-Ph2pz)(μ-Et)AlEt2 and ΔH = 1.7 ± 0.1 kcal/mol, ΔS = −46.6 ± 43.4 cal/K mol, and for (nPr)2Al(μ-tBu2pz)(μ-nPr)Al(nPr)2. The negative values of ΔS imply ordered transition states relative to the ground states, and rotation along the N-AlR3 vector without aluminum-nitrogen bond cleavage is proposed.  相似文献   

12.
The syntheses of ketimide titanium complexes of the type Ti(NCtBu2)3X (X = Cl, Cp, Ind), Ti(NCtBu2)4 and the zirconium complex CpZr(NCtBu2)2Cl are described. When activated by MAO, all compounds are ethylene polymerisation catalysts. In the conditions studied, the most active catalyst is CpZr(NCtBu2)2Cl, with an activity of 2.7 × 105 kg/(molZr [E] h). Titanium complexes are less active by about two orders of magnitude. The polyethylene produced is linear, as determined by NMR spectroscopy. Molecular structures of Ti(NCtBu2)3X (X = Cl, Cp, Ind) and Ti(NCtBu2)4 were determined by X-ray single crystal diffraction.  相似文献   

13.
Reactions of 1,2-catechol with tBu3M (M = Ga, In) have been studied. Trinuclear compounds [tBu5M3(OC6H4O)2] [M = Ga (1), M = In (2)] were synthesised in the reaction of 2 equiv. of C6H4(OH)2 with 3 equiv. of tBu3M in refluxing solvents. At room temperature the reaction of 1,2-catechol with tBu3In in Et2O leads to the formation of a binuclear complex [tBu4In2(OC6H4OH)2 · 2Et2O] (3) possessing a four-membered In2O2 core and two unreacted hydroxyl groups. The same reaction carried out in a non-coordinating solvent (CH2Cl2) results in formation a compound [tBu3In2(OC6H4O)(OC6H4OH)] (4), which undergoes a reaction with tBu3In to yield the product 2. Moreover two intermediate isomeric products 5 and 6 of formula [tBu3Ga2(OC6H4O)(OC6H4OH)] were isolated from the post-reaction mixture of 1,2-catechol with tBu3Ga. The compound 6 possessing a different coordination of gallium atoms than 5 is a result of the intramolecular rearrangement of the compound 5 to decrease the steric repultion between ligands. Compounds 3 and 6 were structurally characterised. According to the structure of intermediate products 3-6 a reaction pathway of 1,2-catechols with group 13 metal trialkyls was proposed.  相似文献   

14.
Reactions of 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acids (LHH′, where the aryl group is an R-substituted phenyl ring such that for L1HH′: R = H; L2HH′: R = 2′-CH3; L3HH′: R = 3′-CH3; L4HH′: R = 4′-CH3; L5HH′: R = 4′-Cl; L6HH′: R = 4′-Br) with nBu2SnO in a 1:1 molar ratio yielded complexes of composition {[nBu2Sn(LH)]2O}2. The complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of {[nBu2Sn(L1H)]2O}2 (1), {[nBu2Sn(L4H)]2O}2 (4), {[nBu2Sn(L5H)]2O}2 (5) and {[nBu2Sn(L6H)]2O}2 (6) were determined. The compounds are centrosymmetric tetranuclear bis(dicarboxylatotetrabutyldistannoxane) complexes containing a planar Sn4O2 core in which two μ3-oxo O-atoms connect an Sn2O2 ring to two exocyclic Sn-atoms. The four carboxylate ligands display two different modes of coordination where both modes involve bridging of two structurally distinct Sn-atoms. The solution structures were confirmed by 119Sn NMR spectroscopy by observing two tin resonances in compounds 1, and 4-6. The observed difference between the two tin resonances was about 3 ppm while the differences in 13C resonances were even smaller. Compounds {[nBu2Sn(L2H)]2O}2 (2) and {[nBu2Sn(L3H)]2O}2 (3) undergo a very complex exchange processes in deuteriochloroform solution. The in vitro cytotoxic activity of compounds 1 and 4 against WIDR, M19 MEL, A498, IGROV, H226, MCF7 and EVSA-T human tumour cell lines is reported.  相似文献   

15.
Syntheses and crystal structures of [tBu3SbCr(CO)5] (1), [tBu3BiM(CO)5] [M = Cr (2), W (3)] and [tBu3BiMnCp′(CO)2] (4) (Cp′ = η5-C5H4CH3) are reported.  相似文献   

16.
The diorganotin(IV) compounds, [Me2SnL2(OH2)]2 (1), [nBu2SnL2(OH2)]2 (2), [nBu2SnL1]3 · 0.5C3H6O (3), [nBu2SnL3]3 · 0.5C6H6 (4) and [Ph2SnL3]n · 0.5C6H6 (5) (L = carboxylic acid residue, i.e., 2-{[(E)-1-(2-oxyaryl)alkylidene]amino}acetate), were synthesized by treating the appropriate diorganotin(IV) dichloride with the potassium salt of the ligand in anhydrous methanol.The reaction of Ph2SnL2 (L = 2-{[(E)-1-(2-oxyphenyl)ethylidene]amino}acetate) with 1,10-phenanthroline (Phen) yielded a 1:1 adduct of composition, [Ph2SnL2(Phen)] (6).The crystal structures of 1-6 were determined.The crystal of 1 is composed of centrosymmetric dimers of the basic Me2SnL2(OH2) moiety, where the two Sn-centres are linked by two asymmetric Sn-O?Sn bridges involving the carboxylic acid O atom of the ligand and a long Sn?O distance of 3.174(2) Å.The dimers are further linked into columns by hydrogen bonds.The coordination geometry about the Sn atom is a distorted pentagonal bipyramid with the two methyl groups in axial positions.The structure of 2 is similar.The same Sn atom coordination geometry is observed in compound 3, which is a cyclic trinuclear[nBu2SnL1]3 compound. Each Sn atom is coordinated by the phenoxide O atom, one carboxylate O atom and the imino N atom from one ligand and both the exo- and endo-carboxylate O atoms (mean Sn-O(exo): 2.35 Å; Sn-O(endo): 2.96 Å) from an adjacent ligand to form the equatorial plane, while the two butyl groups occupy axial positions. Compound 4 was found to crystallize in two polymorphic forms. The Sn-complex in both forms has a trinuclear [nBu2SnL3]3 structural motif similar to that found in 3. In compound 5, distorted trigonal bipyramidal Ph2SnL3 units are linked into polymeric cis-bridged chains by a weak Sn?O interaction (3.491(2) Å) involving the exocyclic O atom of the tridentate ligand of a neighboring Sn-complex unit. This interaction completes a highly distorted octahedron about the Sn atom, where the weakly coordinated exocyclic O atom and one phenyl group are trans to one another. In contrast, a monomeric distorted pentagonal bipyramidal geometry is found for adduct 6 where the Sn-phenyl groups occupy the axial positions. The solution and solid-state structures are compared by using 119Sn NMR chemical shift data. Compounds 1-6 were also studied using ESI-MS and their positive- and negative-ions mass fragmentation patterns are discussed.  相似文献   

17.
The interaction of palladium(+1) cluster Pd4(μ-CO)4(μ-OAc)4 with saturated and unsaturated carboxylic acids was studied. It was found, that the substitution of acetates groups on others carboxylates leads to the clusters with different nuclearity. Palladium(+1) carbonyl carboxylate complexes of composition [Pd(μ-CO)(μ-OCOR)]n, where R = CF3, CCl3, CH2Cl, MeCH = CMe, Me, Pri, Bu, Bui, Butert, n-C5H11 and n = 4 or 6 were synthesized. According to X-ray data all clusters possess cyclic planar metal cores with alternate pairs of μ-carbonyl and μ-carboxylate ligands. The presence of bulky alkyl fragments in the carboxylate ligand increases the nuclearity of the cluster compared to that of the starting palladium(+1) carbonyl acetate of composition Pd4(μ-CO)4(μ-OAc)4 due, apparently, to steric hindrance.  相似文献   

18.
Novel heteroscorpionate-containing tin and organotin(IV) complexes, [SnRnX3 − n(L)], R = Me, Bun, Ph, or cy; X = Cl, Br or I, n = 0, 1, 2 or 3; L = bis(pyrazol-1-yl)acetate (bpza) or bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza), have been synthesized and characterized by spectral (IR, 1H, 13C and 119Sn NMR, 119mSn Mössbauer) and analytical data. In [SnI3(bdmpza)], the ligand is fac-N,N′,O-tridentate, the three iodine atoms thus also fac about the six-coordinate tin(IV) atom. Neutral bpzaH reacts with BunSnCl3, PhSnCl3 and SnCl4 in Et2O in the absence of base, yielding 1:1 adducts [XSnCl3(bpzaH)] (X = R or Cl).  相似文献   

19.
The electrochemical behavior of two series of homo- and heterometallic 1,3,5-triethynylbenzene-based transition metal complexes containing [(η2-dppf)(η5-C5H5)Ru], [(PPh3)25-C5H5)Os], [(tBu2bpy)(CO)3Re], and [(bpy)(CO)3ClRe] (dppf = 1,1′-bis(diphenylphosphino)ferrocene; tBu2bpy = 4,4′-di-tert-butyl-2,2′-bipyridyl; bpy = 2,2′-bipyridyl-5-yl) building blocks have been studied, showing that there is electronic interaction between the appropriate metal atoms. The electronic absorption spectra reveal high energy bands corresponding to intraligand π → π∗ transitions (bpy, alkynyl) and low energy absorptions which are attributed to MLCT transitions; replacement of ruthenium by osmium results in a blue-shift of the MLCT bands. The associated radical cations of three complexes were in situ generated by chemical oxidation and characterized by continuous wave electron paramagnetic resonance (EPR) investigations in X-band performed at low temperatures.  相似文献   

20.
A new synthetic route is described to generate the 4-centre-5 electron donor ring system (P3C2tBu2BuH), via protonation of the lithium salts [LiFe(η4-P2C2tBu2PBu)(η5-C5R5)] (R = H, Me). The molecular structure of [Fe(η4-P3C2tBu2BuH)(η5-C5R5)] (R = Me) has been determined by a single crystal X-ray study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号