首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-frequency auditory filter shapes of an Atlantic bottlenose dolphin (Tursiops truncatus) were measured using a notched noise masking source centered on pure tone signals at frequencies of 40, 60, 80 and 100?kHz. A dolphin was trained to swim into a hoop station facing the noise/signal transducer located at a distance of 2?m. The dolphin's masked threshold was determined using an up-down staircase method as the width of the notched noise was randomly varied from 0, 0.2, 04, 0.6, and 0.8 times the test tone frequency. The masked threshold decreased as the width of the notched increased and less noise fell within the auditory filter associated with the test tone. The auditory filter shapes were approximated by fitting a roex (p,r(r)) function to the masked threshold results. A constant-Q value of 8.4 modeled the results within the frequency range of 40 to 100 kHz relatively well. However, between 60 and 100?kHz, the 3?dB bandwidth was relatively similar between 9.5 and 10?kHz, indicating a constant-bandwidth system in this frequency range The mean equivalent rectangular bandwidth calculated from the filter shape was approximately 16.0%, 17.0%, 13.6% and 11.3% of the tone frequencies of 40, 60, 80, and 100?kHz.  相似文献   

2.
A behavioral response paradigm was used to measure hearing thresholds in bottlenose dolphins before and after exposure to 3 kHz tones with sound exposure levels (SELs) from 100 to 203 dB re 1 microPa2 s. Experiments were conducted in a relatively quiet pool with ambient noise levels below 55 dB re 1 microPa2/Hz at frequencies above 1 kHz. Experiments 1 and 2 featured 1-s exposures with hearing tested at 4.5 and 3 kHz, respectively. Experiment 3 featured 2-, 4-, and 8-s exposures with hearing tested at 4.5 kHz. For experiment 2, there were no significant differences between control and exposure sessions. For experiments 1 and 3, exposures with SEL=197 dB re 1 microPa2 s and SEL > or = 195 dB re 1 microPa2 s, respectively, resulted in significantly higher TTS4 than control sessions. For experiment 3 at SEL= 195 dB re 1 microPa2 s, the mean TTS4 was 2.8 dB. These data are consistent with prior studies of TTS in dolphins exposed to pure tones and octave band noise and suggest that a SEL of 195 dB re 1 microPa2 s is a reasonable threshold for the onset of TTS in dolphins and white whales exposed to midfrequency tones.  相似文献   

3.
A behavioral response paradigm was used to measure masked underwater hearing thresholds in a bottlenose dolphin (Tursiops truncatus) and a white whale (Delphinapterus leucas) before and after exposure to single underwater impulsive sounds produced from a seismic watergun. Pre- and postexposure thresholds were compared to determine if a temporary shift in masked hearing thresholds (MTTS), defined as a 6-dB or larger increase in postexposure thresholds, occurred. Hearing thresholds were measured at 0.4, 4, and 30 kHz. MTTSs of 7 and 6 dB were observed in the white whale at 0.4 and 30 kHz, respectively, approximately 2 min following exposure to single impulses with peak pressures of 160 kPa, peak-to-peak pressures of 226 dB re 1 microPa, and total energy fluxes of 186 dB re 1 microPa2 x s. Thresholds returned to within 2 dB of the preexposure value approximately 4 min after exposure. No MTTS was observed in the dolphin at the highest exposure conditions: 207 kPa peak pressure, 228 dB re 1 microPa peak-to-peak pressure, and 188 dB re 1 microPa2 x s total energy flux.  相似文献   

4.
Underwater audiograms are available for only a few odontocete species. A false killer whale (Pseudorca crassidens) was trained at Sea Life Park in Oahu, Hawaii for an underwater hearing test using a go/no-go response paradigm. Over a 6-month period, auditory thresholds from 2-115 kHz were measured using an up/down staircase psychometric technique. The resulting audiogram showed hearing sensitivities below 64 kHz similar to those of belugas (Delphinapterus leucas) and Atlantic bottlenosed dolphins (Tursiops truncatus). Above 64 kHz, this Pseudorca had a rapid decrease in sensitivity of about 150 dB per octave. A similar decrease in sensitivity occurs at 32 kHz in the killer whale, at 50 kHz in the Amazon River dolphin, at 120 kHz in the beluga, at 140 kHz in the bottlenosed dolphin, and at 140 kHz in the harbor porpoise. The most sensitive range of hearing was from 16-64 kHz (a range of 10 dB from the maximum sensitivity). This range corresponds with the peak frequency of echolocation pulses recorded from captive Pseudorca.  相似文献   

5.
Auditory filter shape and frequency tuning may be derived by measuring changes in pure tone thresholds as a function of the bandwidth of notched-noise maskers. When these psychophysical methods were applied to CBA/CaJ mice, the resulting filter shapes were well fit by roex(p,r) functions originally developed for human subjects. The equivalent rectangular bandwidths (ERBs) of the filter shapes ranged from 16 to 19% of test frequencies between 8 to 16 kHz. These ERBs correspond well to the performance of humans at high frequencies and the limited number of mammalian species that have been characterized with notched-noise procedures. Frequency tuning was maintained throughout most of the adult lifespan and then showed a selective high-frequency loss at ages beyond 2 years. These results suggest that auditory filtering effects in adult CBA/CaJ mice are similar to normal processes in other mammalian species and provide an excellent model of human presbycusis when they begin to degrade in aging individuals.  相似文献   

6.
Behaviorally determined hearing thresholds for a 7.5-kHz tone for an Atlantic bottlenosed dolphin (Tursiops truncatus) were obtained following exposure to fatiguing low-frequency octave band noise. The fatiguing stimulus ranged from 4 to 11 kHz and was gradually increased in intensity to 179 dB re 1 microPa and in duration to 55 min. Exposures occurred no more frequently than once per week. Measured temporary threshold shifts averaged 11 dB. Threshold determination took at least 20 min. Recovery was examined 360, 180, 90, and 45 min following exposure and was essentially complete within 45 min.  相似文献   

7.
Psychophysical tuning curves (PTCs) measured in simultaneous masking usually sharpen as a short duration signal is moved from the onset to the temporal center of a longer duration masker. Filter shapes derived from notched-noise maskers have not consistently shown this effect. One possible explanation for this difference is that the signal level is fixed in the PTC paradigm, whereas the masker level is usually fixed in the notched-noise paradigm. In the present study, the signal level was fixed at 10 dB SL in both paradigms. The signal was 20 ms in duration, and presented at the onset or temporal center of the 400-ms masker. The masker was a pure tone presented in quiet (PTC) or in the presence of a pure-tone "restrictor" intended to limit off-frequency listening (PTCr), or it was a noise with a spectral notch placed symmetrically or asymmetrically about the 2-kHz signal frequency. Filter shapes were derived from the PTC, PTCr, and notched-noise data using the roex (p, w, t) model. The effects of signal delay and masking paradigm on filter bandwidth were analyzed with a two-factor repeated-measures ANOVA. There was a significant effect of signal delay (the filters sharpened with time) and masking paradigm (the filters derived from the notched-noise data were significantly wider than those derived from either of the PTC measurements, which did not differ from one another). Although the interaction between delay and paradigm was not significant, the filter derived from the notched-noise data sharpened more with time than did the other filters, and thus the bandwidth of the filters from the three paradigms were more similar at the longer delay than at the shorter delay. It is likely that the tuning-curve and notched-noise paradigms measure the same underlying filtering, but that various other factors contribute differentially to the derived filter shapes.  相似文献   

8.
At present, the fundamental frequencies of signals of most commercially available acoustic alarms to deter small cetaceans are below 20 kHz, but it is not well ascertained whether higher frequencies have a deterrent effect on bottlenose dolphins (Tursiops truncatus). Two captive bottlenose dolphins housed in a floating pen were subjected to a continuous pure tone at 50 kHz with a source level of 160 ± 2 dB (re 1 μPa, rms). The behavioral responses of dolphins were judged by comparing surfacing distance relative to the sound source, number of surfacings, and number of echolocation clicks produced, during forty 15 min baseline periods with forty 15 min test periods (four sessions per day, 40 sessions in total). On all 10 study days, surfacing distance and the number of surfacings increased while click production decreased during broadcasts of test sound. The avoidance threshold sound pressure level for a continuous 50 kHz tone for the bottlenose dolphins, in the context of this study, was estimated to be 144 ± 2 dB (re 1 μPa, rms). The results indicated that a continuous 50 kHz tonal signal can deter bottlenose dolphins from an area.  相似文献   

9.
Fish-eating "resident"-type killer whales (Orcinus orca) that frequent the coastal waters off northeastern Vancouver Island, Canada have a strong preference for chinook salmon (Oncorhynchus tshawytscha). The whales in this region often forage along steep cliffs that extend into the water, echolocating their prey. Echolocation signals of resident killer whales were measured with a four-hydrophone symmetrical star array and the signals were simultaneously digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located adjacent to the array center. Only signals emanating from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broadband echolocation signals (Q equal 0.9 to 1.4) that tend to have bimodal frequency structure. Ninety-seven percent of the signals had center frequencies between 45 and 80 kHz with bandwidths between 35 and 50 kHz. The peak-to-peak source level of the echolocation signals decreased as a function of the one-way transmission loss to the array. Source levels varied between 195 and 224 dB re: 1 microPa. Using a model of target strength for chinook salmon, the echo levels from the echolocation signals are estimated for different horizontal ranges between a whale and a salmon. At a horizontal range of 100 m, the echo level should exceed an Orcinus hearing threshold at 50 kHz by over 29 dB and should be greater than sea state 4 noise by at least 9 dB. In moderately heavy rain conditions, the detection range will be reduced substantially and the echo level at a horizontal range of 40 m would be close to the level of the rain noise.  相似文献   

10.
The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 1/3 oct). Maximum sensitivity (42 dB re 1 microPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.  相似文献   

11.
A behavioral response paradigm was used to measure masked underwater hearing thresholds in five bottlenose dolphins and two white whales before and immediately after exposure to intense 1-s tones at 0.4, 3, 10, 20, and 75 kHz. The resulting levels of fatiguing stimuli necessary to induce 6 dB or larger masked temporary threshold shifts (MTTSs) were generally between 192 and 201 dB re: 1 microPa. The exceptions occurred at 75 kHz, where one dolphin exhibited an MTTS after exposure at 182 dB re: 1 microPa and the other dolphin did not show any shift after exposure to maximum levels of 193 dB re: 1 microPa, and at 0.4 kHz, where no subjects exhibited shifts at levels up to 193 dB re: 1 microPa. The shifts occurred most often at frequencies above the fatiguing stimulus. Dolphins began to exhibit altered behavior at levels of 178-193 dB re: 1 microPa and above; white whales displayed altered behavior at 180-196 dB re: 1 microPa and above. At the conclusion of the study all thresholds were at baseline values. These data confirm that cetaceans are susceptible to temporary threshold shifts (TTS) and that small levels of TTS may be fully recovered.  相似文献   

12.
Spectral parameters were used to discriminate between echolocation clicks produced by three dolphin species at Palmyra Atoll: melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus) and Gray's spinner dolphins (Stenella longirostris longirostris). Single species acoustic behavior during daytime observations was recorded with a towed hydrophone array sampling at 192 and 480 kHz. Additionally, an autonomous, bottom moored High-frequency Acoustic Recording Package (HARP) collected acoustic data with a sampling rate of 200 kHz. Melon-headed whale echolocation clicks had the lowest peak and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins were nested in between these two species. Frequency differences were significant. Temporal parameters were not well suited for classification. Feature differences were enhanced by reducing variability within a set of single clicks by calculating mean spectra for groups of clicks. Median peak frequencies of averaged clicks (group size 50) of melon-headed whales ranged between 24.4 and 29.7 kHz, of bottlenose dolphins between 26.7 and 36.7 kHz, and of spinner dolphins between 33.8 and 36.0 kHz. Discriminant function analysis showed the ability to correctly discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of bottlenose dolphins.  相似文献   

13.
Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.  相似文献   

14.
Killer whale (Orcinus orca) audiograms were measured using behavioral responses and auditory evoked potentials (AEPs) from two trained adult females. The mean auditory brainstem response (ABR) audiogram to tones between 1 and 100 kHz was 12 dB (re 1 mu Pa) less sensitive than behavioral audiograms from the same individuals (+/- 8 dB). The ABR and behavioral audiogram curves had shapes that were generally consistent and had the best threshold agreement (5 dB) in the most sensitive range 18-42 kHz, and the least (22 dB) at higher frequencies 60-100 kHz. The most sensitive frequency in the mean Orcinus audiogram was 20 kHz (36 dB), a frequency lower than many other odontocetes, but one that matches peak spectral energy reported for wild killer whale echolocation clicks. A previously reported audiogram of a male Orcinus had greatest sensitivity in this range (15 kHz, approximately 35 dB). Both whales reliably responded to 100-kHz tones (95 dB), and one whale to a 120-kHz tone, a variation from an earlier reported high-frequency limit of 32 kHz for a male Orcinus. Despite smaller amplitude ABRs than smaller delphinids, the results demonstrated that ABR audiometry can provide a useful suprathreshold estimate of hearing range in toothed whales.  相似文献   

15.
The use of ultrasonic sounds in alarms for gillnets may be advantageous, but the deterring effects of ultrasound on porpoises are not well understood. Therefore a harbor porpoise in a large floating pen was subjected to a continuous 50 kHz pure tone with a source level of 122+/-3 dB (re 1 microPa, rms). When the test signal was switched on during test periods, the animal moved away from the sound source. Its respiration rate was similar to that during baseline periods, when the sound was switched off. The behavior of the porpoise was related to the sound pressure level distribution in the pen. The sound level at the animal's average swimming location during the test periods was approximately 107+/-3 dB (re 1 microPa, rms). The avoidance threshold sound pressure level for a continuous 50 kHz pure tone for this porpoise, in the context of this study, is estimated to be 108+/-3 dB (re 1 microPa, rms). This study demonstrates that porpoises may be deterred from an area by high frequency sounds that are not typically audible to fish and pinnipeds and would be less likely masked by ambient noise.  相似文献   

16.
The Indian Ocean and Atlantic bottlenose dolphins (Tursiops aduncus and Tursiops truncatus) are among the best studied echolocating toothed whales. However, almost all echolocation studies on bottlenose dolphins have been made with captive animals, and the echolocation signals of free-ranging animals have not been quantified. Here, biosonar source parameters from wild T. aduncus and T. truncatus were measured with linear three- and four-hydrophone arrays in four geographic locations. The two species had similar source parameters, with source levels of 177-228 dB re 1 μPa peak to peak, click durations of 8-72 μs, centroid frequencies of 33-109 kHz and rms bandwidths between 23 and 54 kHz. T. aduncus clicks had a higher frequency emphasis than T. truncatus. The transmission directionality index was up to 3 dB higher for T. aduncus (29 dB) as compared to T. truncatus (26 dB). The high directionality of T. aduncus does not appear to be only a physical consequence of a higher frequency emphasis in clicks, but may also be caused by differences in the internal properties of the sound production system.  相似文献   

17.
Receiving beam patterns of a harbor porpoise were measured in the horizontal plane, using narrow-band frequency modulated signals with center frequencies of 16, 64, and 100 kHz. Total signal duration was 1000 ms, including a 200 ms rise time and 300 ms fall time. The harbor porpoise was trained to participate in a psychophysical test and stationed itself horizontally in a specific direction in the center of a 16-m-diameter circle consisting of 16 equally-spaced underwater transducers. The animal's head and the transducers were in the same horizontal plane, 1.5 m below the water surface. The go/no-go response paradigm was used; the animal left the listening station when it heard a sound signal. The method of constants was applied. For each transducer the 50% detection threshold amplitude was determined in 16 trials per amplitude, for each of the three frequencies. The beam patterns were not symmetrical with respect to the midline of the animal's body, but had a deflection of 3-7 degrees to the right. The receiving beam pattern narrowed with increasing frequency. Assuming that the pattern is rotation-symmetrical according to an average of the horizontal beam pattern halves, the receiving directivity indices are 4.3 at 16 kHz, 6.0 at 64 kHz, and 11.7 dB at 100 kHz. The receiving directivity indices of the porpoise were lower than those measured for bottlenose dolphins. This means that harbor porpoises have wider receiving beam patterns than bottlenose dolphins for the same frequencies. Directivity of hearing improves the signal-to-noise ratio and thus is a tool for a better detection of certain signals in a given ambient noise condition.  相似文献   

18.
The underwater hearing sensitivity of a two-year-old harbor porpoise was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using narrow-band frequency-modulated signals having center frequencies between 250 Hz and 180 kHz. The resulting audiogram was U-shaped with the range of best hearing (defined as 10 dB within maximum sensitivity) from 16 to 140 kHz, with a reduced sensitivity around 64 kHz. Maximum sensitivity (about 33 dB re 1 microPa) occurred between 100 and 140 kHz. This maximum sensitivity range corresponds with the peak frequency of echolocation pulses produced by harbor porpoises (120-130 kHz). Sensitivity falls about 10 dB per octave below 16 kHz and falls off sharply above 140 kHz (260 dB per octave). Compared to a previous audiogram of this species (Andersen, 1970), the present audiogram shows less sensitive hearing between 2 and 8 kHz and more sensitive hearing between 16 and 180 kHz. This harbor porpoise has the highest upper-frequency limit of all odontocetes investigated. The time it took for the porpoise to move its head 22 cm after the signal onset (movement time) was also measured. It increased from about 1 s at 10 dB above threshold, to about 1.5 s at threshold.  相似文献   

19.
Auditory-filter shapes at 2 kHz were estimated for 95 young normally hearing subjects using a notched-noise masker with spectrum level of 45 dB. Excluding two subjects with a recent history of noise exposure, the equivalent rectangular bandwidths (ERBs) of the filters were approximately normally distributed but the distribution had a slight positive skew. The mean ERB was 308 Hz and the standard deviation was 32 Hz. The two noise-exposed subjects had ERBs of 404 and 497 Hz.  相似文献   

20.
Devices known as jawphones have previously been used to measure interaural time and intensity discrimination in dolphins. This study introduces their use for measuring hearing sensitivity in dolphins. Auditory thresholds were measured behaviorally against natural background noise for two bottlenose dolphins (Tursiops truncatus); a 14-year-old female and a 33-year-old male. Stimuli were delivered to each ear independently by placing jawphones directly over the pan bone of the dolphin's lower jaw, the assumed site of best reception. The shape of the female dolphin's auditory functions, including comparison measurements made in the free field, favorably matches that of the accepted standard audiogram for the species. Thresholds previously measured for the male dolphin at 26 years of age indicated a sensitivity difference between the ears of 2-3 dB between 4-10 kHz, which was considered unremarkable at the time. Thresholds for the male dolphin reported in this study suggest a high-frequency loss compared to the standard audiogram. Both of the male's ears have lost sensitivity to frequencies above 55 kHz and the right ear is 16-33 dB less sensitive than the left ear over the 10-40 kHz range, suggesting that males of the species may lose sensitivity as a function of age. The results of this study support the use of jawphones for the measurement of dolphin auditory sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号