首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Protonation processes and electronic spectra of histidine and related ions   总被引:1,自引:0,他引:1  
A full structural assignment of the neutral, protonated, and deprotonated histidine conformers in the gas phase is presented. A total of 3024 unique trial structures were generated by all combinations of internal single-bond rotamers of these species and optimized at the B3LYP/6-311G* level and further optimized at the B3LYP/6-311++G** level. A set of unique conformers is found, and their relative energies, free energies, dipole moments, rotational constants, electron affinities, ionization energies, and harmonic frequencies are determined. The population ratio of histidine and its tautomer is 1:0.16 at 298 K. Massive conformational changes are observed due to protonation and deprotonation, and the intramolecular H-bonds are characterized with the atoms in molecules theory. The calculated proton dissociation energy, gas-phase acidity, proton affinity, and gas-phase basicity are in excellent agreement with the experiments. The deprotonation and protonation of gaseous histidine both occur on the imidazole ring, explaining the versatile biofunctions of histidine in large biomolecules. The UV spectra of neutral and singly and doubly protonated histidine are investigated with the TDDFT/B3LYP/6-311+G(2df,p) calculations. The S0-S1, S0-S2, and S0-S3 excitations of histidine are mixed pipi*/npi* transitions at 5.37, 5.44, and 5.69 eV, respectively. The three excitation energies for histidine tautomer are 4.85, 5.47, and 5.52 eV, respectively. The three excitations for protonated histidine are mainly npi* transitions at 5.45, 5.67, and 5.82 eV, respectively. The S0-S1 excitation of protonated histidine produces ImH-CbetaH2-CalphaH(COOH)-NH2+, while the S0-S2 and S0-S3 transitions produce ImH-CbetaH2-CalphaH(NH2)-(COOH)+. These data may help to understand the mechanisms of the UV fragmentation of biomolecules.  相似文献   

2.
Protonated peptides containing histidine or arginine residues and a free carboxyl group (His-Ala-Ile, His-Ala-Leu, Ala-His-Leu, Ala-Ala-His-Ala-Leu, His-Ala-Ala-Ala-Leu, and Arg-Ala-Ile) form stable anions upon collisional double electron transfer from Cs atoms at 50 keV kinetic energies. This unusual behavior is explained by hidden rearrangements occurring in peptide radical intermediates formed by transfer of the first electron. The rearrangements occur on a approximately 120 ns time scale determined by the radical flight time. Analysis of the conformational space for (His-Ala-Ile + H)(+) precursor cations identified two major conformer groups, 1a(+)-1m(+) and 5a(+)-5h(+) , that differed in their H-bonding patterns and were calculated to collectively account for 39% and 60%, respectively, of the gas-phase ions. One-electron reduction in 1a(+) and 5a(+) triggers exothermic hydrogen atom migration from the terminal COOH group onto the His imidazole ring, forming imidazoline radical intermediates. The intermediate from 5a is characterized by its charge and spin distribution as a novel cation radical-COO(-) salt bridge. The intermediate from 1a undergoes spontaneous isomerization by imidazoline N-H migration, re-forming the COOH group and accomplishing exothermic isomerization of the initial (3H)-imidazole radical to a (2H)-imidazole radical. An analogous unimolecular isomerization in simple imidazole and histidine radicals requires activation energies of 150 kJ mol(-1), and its occurrence in 1a and 5a is due to the promoting effect of the proximate COOH group. The rearrangement is substantially reduced in Ala-Leu-His due to an unfavorable spatial orientation of the imidazole and COOH groups and precluded in the absence of a free carboxyl group in His-Ala-Leu amide. In contrast to His-Ala-Ile and Arg-Ala-Ile, protonated Lys-Ala-Ile does not produce stable anions upon double electron transfer. The radical trapping properties of histidine residues are discussed.  相似文献   

3.
Computation of accurate intramolecular hydrogen-bonding energies for peptides is of great importance in understanding the conformational stabilities of peptides and developing a more accurate force field for proteins. We have proposed a method to determine the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies in glycine and alanine peptides. In this article, the method is further applied to evaluate the intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies in peptides. The optimal structures of the intramolecular 10-membered ring N-H...O=C hydrogen bonds in glycine and alanine tripetide molecules are obtained at the MP2 level with 6-31G(d), 6-31G(d,p), and 6-31+G(d,p) basis sets. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are then evaluated based on our method at the MP2/6-311++G(3df,2p) level with basis set superposition error correction. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are calculated to be in the range of -6.84 to -7.66, -4.44 to -4.98, and -6.95 to -7.88 kcal/mol. The method is also applied to estimate the individual intermolecular hydrogen-bonding energies in the dimers of amino-acetaldehyde, 2-amino-acetamide, formamide, and oxalamide, each dimer having two identical intermolecular hydrogen bonds. According to our method, the individual intermolecular hydrogen-bonding energies in the four dimers are calculated to be -1.77, -1.67, -6.35, and -4.82 kcal/mol at the MP2/6-311++G(d,p) level, which are in good agreement with the values of -1.84, -1.72, -6.23, and -4.93 kcal/mol predicted by the supermolecular method.  相似文献   

4.
L-[5'-2H2]Histidine was used as a substrate to investigate the enzymatic reaction mechanism with histidine ammonia-lyase from Pseudomonas fluorescens. The study was performed to determine the exchange rate of deuterium at C-5' of the imidazole ring with solvent hydrogen relative to the net urocanic acid production. The extent of hydrogen exchange at C-5' of histidine or urocanic acid was measured by gas chromatography-mass spectrometry-selected ion monitoring, monitoring the molecular ion intensities of the respective gas chromatographic derivatives, at m/z 380 and 379 for histidine and at m/z 267 and 266 for urocanic acid. The observed hydrogen exchange at C-5' suggested a reversible mechanism via a carbanion intermediate in the reaction with histidine ammonia-lyase.  相似文献   

5.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

6.
Low-energy collision-induced dissociation (CID) of acetylcholine (ACh) yields only two fragment ions: the dominant C(4)H(7)O(2)(+) ion at m/z 87, arising from trimethylamine loss; and protonated trimethylamine at m/z 60. Since the literature is replete with conflicting mechanisms for the loss of trimethylamine from ACh, in this article density functional theory (DFT) calculations are used to assess four competing mechanisms: (1) Path A involves a neighboring group attack to form a five-membered ring product, 2-methyl-1,3-dioxolan-2-ylium cation; (2) Path B is a neighboring group attack to form a three-membered ring product, 1-methyl-oxiranium ion; (3) Path C involves an intramolecular elimination reaction to form CO protonated vinylacetate; and (4) Path D is a 1,2-hydride migration reaction forming CH(2)-protonated vinylacetate. At the MP2/6-311++G(2d,p)//B3-LYP/6-31+G(d,p) level of theory path A is the kinetically favored pathway, with a transition-state energy barrier of 37.7 kcal mol(-1) relative to the most stable conformer of ACh. The lowest energy pathway for the formation of protonated trimethylamine was also calculated to proceed via path A, involving proton transfer within the ion-molecule complex intermediate, with the exocylic methyl group being the proton donor. To confirm the site of proton transfer, low-energy CID of acetyl-d(3)-choline (d(3)-ACh) was carried out, which revealed loss of trimethylamine and the formation of Me(3)ND(+).  相似文献   

7.
The influence of α-substitution in the structure, bonding and thermochemical properties of trifluoromethyl-pyridinol derivatives and their protonated counterparts has been studied by means of density functional theory. The geometries of the neutral and protonated species were optimized at the B3-LYP/6-311G(d,p) level of theory. Final energies were obtained through single point B3-LYP/6-311+G(3df,2p) calculations.The relative orientation of the different substituents within the heterocycle ring favours the formation of unexpected intramolecular hydrogen bonds (IHB), which have been characterized by means of the Atoms in Molecules theory of Bader. Although weak, these IHB are of great importance for understanding the gas phase structure and the thermodynamical properties of these compounds. Surprisingly, most of the substituted investigated pyridinols present proton affinities below or close to that calculated for the unsubstituted pyridine molecule. Only pyridinols bearing strong σ or π donor activating groups show proton affinities greater than that of pyridine.  相似文献   

8.
Site-specific rate constants for the gas-phase hydrogen/deuterium (H/D) exchange of four, three, five and five hydrogen atoms in protonated phenylalanine (Phe), proline (Pro), tyrosine (Tyr) and tryptophan (Trp), respectively, were determined from matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) experiments with D(2)O, D(2)S, and CH(3)OD as deuterating agents. No H/D exchange was observed with D(2)S. For exchange with both CD(3)OD and D(2)O, which is about ten times slower in the latter, results indicate for all compounds protonation of the alpha-amino group in agreement with theoretical results. Also, with both reagents, all compounds exchange at the COOH site more than ten times faster than at the protonation site, with OH and NH sites of Tyr and Trp, respectively, exchanging slowest. The observation of H/D exchange despite the high differences in proton affinities between the amino acids and deuterating agent exceeding 200 kJ mol(-1) is in agreement with lowering of the barrier for proton transfer through hydrogen bonding proposed by Lebrilla and coworkers.  相似文献   

9.
A mass spectrometry and Density Functional Theory study of gas-phase H/D exchange in protonated Ala, Cys, Ile, Leu, Met, and Val is reported. Site-specific rate constants were determined and results identify the alpha-amino group as the protonation site. Lack of exchange on the Cys thiol group is explained by the absence of strong intramolecular hydrogen bonding within the reaction complex. In aliphatic amino acids the presence of a methyl group at the beta-C atom was found to lower the site-specific H/D exchange rate for amino hydrogens. Study of the exchange mechanism showed that isotopic exchange occurs in two independent reactions: in one, only the carboxylic hydrogen is exchanged and in the other, both carboxylic and amino group hydrogens exchange. The proposed reaction mechanisms, calculated structures of various species, and a number of structural findings are consistent with experimental data.  相似文献   

10.
The dissociation of a weak acid - a histidine residue - in water was investigated by means of constrained Car-Parrinello ab initio molecular dynamics. Both linear and coordination constraints were employed, and the structural, electronic, and dynamical transformations along the respective reaction coordinates were analyzed. The calculated potentials of mean force for the dissociation of a hydrogen atom from the Nepsilon and Ndelta positions of the imidazole ring reveal that protonated forms are approximately 9.0-9.5 kcal/mol more stable than the deprotonated. This result seems to agree well with the experimental estimate based on pKa. A possible transition state for the deprotonation has also been identified. Analysis of the electron localization function indicates that the proton transfer along the selected reaction path is not a fully concerted process.  相似文献   

11.
The natural neurotransmitter (R)-norepinephrine takes the monocationic form in 93% abundance at the physiological tissue pH of 7.4. Ab initio and DFT/B3LYP calculations were performed for 12 protonated conformers of (R)-norepinephrine in the gas phase with geometry optimizations up to the MP2/6-311++G level, and with single-point calculations up to the QCISD(T) level at the HF/6-31G-optimized geometries. Four monohydrates were studied at the MP2/6-31G//HF/6-31G level. In the gas phase, the G1 conformer is the most stable with phenyl.NH(3)(+) gauche and HO(alc).NH(3)(+) gauche arrangements. A strained intramolecular hydrogen bond was found for conformers (G1 and T) with close NH(3)(+) and OH groups. Upon rotation of the NH(3)(+) group as a whole unit about the C(beta)-C(alpha) axis, a 3-fold potential was calculated with free energies for barriers of 3-12 kcal/mol at the HF/6-31G level. Only small deviations were found in MP2/6-311++G single-point calculations. A 2-fold potential was calculated for the phenyl rotation with free energies of 11-13 kcal/mol for the barriers at T = 310 K and p = 1 atm. A molecular mechanics docking study of (R)-norepinephrine in a model binding pocket of the beta-adrenergic receptor shows that the ligand takes a conformation close to the T(3) arrangement. The effect of aqueous solvation was considered by the free energy perturbation method implemented in Monte Carlo simulations. There are 4-5 strongly bound water molecules in hydrogen bonds to the conformers. Although hydration stabilizes mostly the G2 form with gauche phenyl.NH(3)(+) arrangement and a water-exposed NH(3)(+) group, the conformer population becomes T > G1 > G2, in agreement with the PMR spectroscopy measurements by Solmajer et al. (Z. Naturforsch. 1983, 38c, 758). Solvent effects reduce the free energies for barriers to 3-6 and 9-12 kcal/mol for rotations about the C(beta)-C(alpha) and the C(1)(ring)-C(beta) axes, respectively.  相似文献   

12.
The gas-phase hydrogen/deuterium (HID) exchange kinetics of several protonated amino acids and dipeptides under a background pressure of CH3OD were determined in an external source Fourier transform mass spectrometer. H/D exchange reactions occur even when the gas-phase basicity of the compound is significantly larger (> 20 kcal/mol) than methanol. In addition; greater deuterium incorporation is observed for compounds that have multiple sites of similar basicities. A mechanism is proposed that involves a structurally specific intermediate with extensive interaction between the protonated compound and methanol.  相似文献   

13.
The influenza M2 protein conducts protons through a critical histidine (His) residue, His37. Whether His37 only interacts with water to relay protons into the virion or whether a low-barrier hydrogen bond (LBHB) also exists between the histidines to stabilize charges before proton conduction is actively debated. To address this question, we have measured the imidazole (1)H(N) chemical shifts of His37 at different temperatures and pH using 2D (15)N-(1)H correlation solid-state NMR. At low temperature, the H(N) chemical shifts are 8-15 ppm at all pH values, indicating that the His37 side chain forms conventional hydrogen bonds (H-bonds) instead of LBHBs. At ambient temperature, the dynamically averaged H(N) chemical shifts are 4.8 ppm, indicating that the H-bonding partner of the imidazole is water instead of another histidine in the tetrameric channel. These data show that His37 forms H-bonds only to water, with regular strength, thus supporting the His-water proton exchange model and ruling out the low-barrier H-bonded dimer model.  相似文献   

14.
The gas phase reactions of protonated tryptophan have been examined in a quadrupole ion trap using a combination of collision induced dissociation, hydrogen-deuterium exchange, regiospecific deuterium labeling and molecular orbital calculations (at the B3LYP/6-31G* level of theory). The loss of ammonia from protonated tryptophan is observed as the primary fragmentation pathway, with concomitant formation of a [M + H - NH(3)](+) ion by nucleophilic attack from the C3 position of the indole side chain. Hydrogen-deuterium exchange and regiospecific deuterium labeling reveals that scrambling of protons in the C2 and C4 positions of the indole ring, via intramolecular proton transfer from the thermodynamically preferred site of protonation at the amino nitrogen, precedes ammonia loss. Molecular orbital calculations have been employed to demonstrate that the activation barriers to intramolecular proton transfer are lower than that for NH(3) loss.  相似文献   

15.
Hydrogen bonding was studied in 24 pairs of isopropyl alcohol and phenol as one partner, and water and amino-acid mimics (methanol, acetamide, neutral and protonated imidazole, protonated methylalamine, methyl-guanidium cation, and acetate anion) as the other partner. MP2/6-31+G* and MP2/aug-cc-pvtz calculations were conducted in the gas phase and in a model continuum dielectric environment with dielectric constant of 15.0. Structures were optimized in the gas phase with both basis sets, and zero-point energies were calculated at the MP2/6-31+G* level. At the MP2/aug-cc-pvtz level, the BSSE values from the Boys-Bernardi counterpoise calculations amount to 10-20 and 5-10% of the uncorrected binding energies of the neutral and ionic complexes, respectively. The geometry distortion energy upon hydrogen-bond formation is up to 2 kcal/mol, with the exception of the most strongly bound complexes. The BSSE-corrected MP2/aug-cc-pvtz binding energy of -27.56 kcal/mol for the gas-phase acetate...phenol system has been classified as a short and strong hydrogen bond (SSHB). The CH3NH3+...isopropyl alcohol complex with binding energy of -22.54 kcal/mol approaches this classification. The complete basis set limit (CBS) for the binding energy was calculated for twelve and six complexes on the basis of standard and counterpoise-corrected geometry optimizations, respectively. The X...Y distances of the X-H...Y bridges differ by up to 0.03 A as calculated by the two methods, whereas the corresponding CBS energy values differ by up to 0.03 kcal/mol. Uncorrected MP2/aug-cc-pvtz hydrogen-bonding energies are more negative by up to 0.35 kcal/mol than the MP2/CBS values, and overestimate the CCSD(T)/CBS binding energies generally by up to 5% for the eight studied complexes in the gas phase. The uncorrected MP2/aug-cc-pvtz binding energies decreased (in absolute value) by 11-18 kcal/mol for the ionic species and by up to 5 kcal/mol for the neutral complexes when the electrostatic effect of a polarizable model environment was considered. The DeltaECCSD(T) - DeltaEMP2 corrections still remained close to their gas-phase values for four complexes with 0, +/-1 net charges. Good correlations (R2 = 0.918-0.958) for the in-environment MP2/aug-cc-pvtz and MP2/6-31+G* hydrogen-bonding energies facilitate the high-level prediction of these energies on the basis of relatively simple MP2/6-31+G* calculations.  相似文献   

16.
The microwave spectra of (methylenecyclopropyl)methanol (H(2)C=C(3)H(3)CH(2)OH) and one deuterated species (H(2)C=C(3)H(3)CH(2)OD) have been investigated in the 20-80 GHz spectral range. Accurate spectral measurements have been performed in the 40-80 GHz spectral interval. The spectra of two rotameric forms, denoted conformer I and conformer IX, have been assigned. Both these rotamers are stabilized by intramolecular hydrogen bonds formed between the hydrogen atom of the hydroxyl group and the pseudo-pi electrons on the outside of the cyclopropyl ring, the so-called "banana bonds". The carbon-carbon bond lengths in the ring are rather different. The bonds adjacent to the methylene group (H(2)C=) are approximately 7 pm shorter that the carbon-carbon bond opposite to this group. It is found from relative intensity measurements of microwave transitions that conformer IX, in which the hydrogen bond is formed with the banana bonds of the long carbon-carbon bond, is 0.4(3) kJ/mol more stable than conformer I, where the hydrogen bond is formed with the pseudo-pi electrons belonging to the shortest carbon-carbon bond of the ring. The microwave study has been augmented by quantum chemical calculations at the MP2/6-311++G, G3 and B3LYP/6-311++G levels of theory.  相似文献   

17.
The conformational study of 3‐aminoacrylaldehyde were performed at various theoretical levels and the equilibrium conformations were determined. Furthermore, to have more reliable energies, the total energies of all forms recomputed at G2MP2 and CBS‐QB3. Theoretical calculations clearly show that the intramolecular hydrogen bond (IHB) is the origin of conformational preference and the resultant IHB order at HF/6‐311++G(d,p), MP2/6‐311++G(d,p), and CBS‐QB3 levels is different from the order which obtained from the B3LYP/6‐311++G(d,p), G2MP2, the geometrical parameters, AIM, and NBO analyses. Furthermore, our theoretical results reveal that the ketoamine (KA) tautomeric group is more stable than the enolimine (EI) and ketoimine (KI) ones. The IHB and tautomeric process could not rationalize the irregular stability of KA group with respect the others. But the population analyses of the possible conformations by NBO predict that the π‐electron delocalization, especially unusual π → π charge transfer, is the origin of tautomeric preference. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

18.
Substituted isobenzofuranone derivatives 1a-3a and bindone 4 are characterized by the presence of an intramolecular C(Ar)-H···O hydrogen bond in the crystal (X-ray), solution ((1)H NMR and specific and nonspecific IEF-PCM solvation model combined with MP2 and B3LYP methods), and gas (MP2 and B3LYP) phases. According to geometric and AIM criteria, the C(Ar)-H···O interaction weakens in 1a-3a (independent of substituent nature) and in 4 with the change in media in the following order: gas phase > CHCl(3) solution > DMSO solution > crystal. The maximum value of hydrogen bond energy is 4.6 kcal/mol for 1a-3a and 5.6 kcal/mol for 4. Both in crystals and in solutions, hydrogen bond strength increases in the order 1a < 2a < 3a with the rising electronegativity of the ring substituents (H < OMe < Cl). The best method for calculating (1)H NMR chemical shifts (δ(calcd) - δ(expl) < 0.7 ppm) of hydrogen bonded and nonbonded protons in 1a-3a and 1b-3b (isomers without hydrogen bonds) is the GIAO method at the B3LYP level with the 6-31G** and 6-311G** basis sets. For the C-H moiety involved in the hydrogen bond, the increase of the spin-spin coupling constant (1)J((13)C-(1)H) by about 7.5 Hz is in good agreement with calculations for C-H bond shortening and for blue shifts of C-H stretching vibrations (by 55-75 cm(-1)).  相似文献   

19.
The rearrangement of aminoethanol catalyzed by ethanolamine ammonia lyase is investigated by computational means employing DFT (B3LYP/6-31G) and ab initio molecular orbital theory (QCISD/cc-pVDZ). The study aims at providing a detailed account on various crucial aspects, in particular a distinction between a direct intramolecular migration of the partially protonated NH(2) group vs elimination of NH(4)(+). Three mechanistic scenarios were explored: (i) According to the calculations, irrespective of the nature of the protonating species, intramolecular migration of the NH(3) group is energetically less demanding than elimination of NH(4)(+). However, all computed activation enthalpies exceed the experimentally derived activation enthalpy (15 kcal/mol) associated with the rate-determining step, i.e., the hydrogen abstraction from the 5'-deoxyadenosine by the product radical. For example, when imidazole is used as a model system for His interacting with the NH(3) group of the substrate, the activation enthalpy for the migration process amounts to 27.4 kcal/mol. If acetic acid is employed to mimic Asp or Glu, the activation enthalpy is somewhat lower, being equal to 24.2 kcal/mol. (ii) For a partial deprotonation of the substrate 2 at the OH group, the rearrangement mechanism consists of the dissociation of an NH(2) radical from C(2) and its association at C(1) atom. For all investigated proton acceptors (i.e., OH(-), HCOO(-), CH(3)COO(-), CH(2)NH, imidazole), the activation enthalpy for the dissociation step also exceeds 15 kcal/mol. Typical data are 20.2 kcal/mol for Ac(-) and 23.8 kcal/mol for imidazole. (iii) However, in a synergistic action of partial protonation of the NH(2) group and partial deprotonation of the OH group by the two conceivable catalytic auxiliaries Asp/Glu and His, the activation enthalpy computed is compatible with the experimental data. For imidazole and acetate as model systems, the activation enthalpy is equal to 13.7 kcal/mol. This synergistic action of the two catalytic groups is expected to take place in a physiologically realistic pH range of 6-9.5, and the present computational findings may help to further characterize the yet unknown structural details of the ethanolamine ammonia lyase's active site.  相似文献   

20.
2-Methoxyphenol (2MP) solutes form weak complexes with toluene solvent molecules. The complexes are unusual in that the 2MP hydroxyl has an intramolecular hydrogen bond and simultaneously forms an intermolecular hydrogen bond with toluene and other aromatic solvents. In the equilibrated solute-solvent solution, there exists approximately the same concentration of 2MP-toluene complex and free 2MP. The very fast formation and dissociation (chemical exchange) of this type of three-centered hydrogen bond complex were observed in real time under thermal equilibrium conditions with two-dimensional (2D) infrared vibrational echo spectroscopy. Chemical exchange is manifested in the 2D spectrum by the growth of off-diagonal peaks. Both the formation and dissociation can be characterized in terms of the dissociation time constant, which was determined to be 3 ps for the 2MP-toluene complex. The intra-intermolecular hydrogen bond formation is influenced by subtle details of the molecular structure. Although 2MP forms a complex with toluene, it is demonstrated that 2-ethoxyphenol (2EP) does not form complexes to any significant extent. Density functional calculations at the B3LYP/6-31+G(d,p) level suggest that steric effects caused by the extra methyl group in 2EP are responsible for the difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号