首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
A computational study of tetrahedrene at the RCCD/cc-pVDZ level led to a singlet-state structure with a lowest energy vibrational mode of 660 cm(-1). The corresponding triplet state was found to be ca. 37 kcal/mol lower in energy than the singlet state. The heat of formation of the singlet state was estimated to be 270 kcal/mol. An isomeric singlet bicyclic dicarbene bis-bicyclo[1.1.0]cyclobutylidene was found to be approximately 94 kcal/mol lower in energy than tetrahedrene.  相似文献   

2.
The synthesis of a series of eight β-naphthyl-substituted 1,2,4-trioxanes 3a-h by a sequence of singlet oxygen ene reaction of allylic alcohols 1a-h and Lewis acid catalyzed peroxyacetalization of the allylic hydroperoxides 2a-h with β-naphthaldehyde is reported. The ene reactions were performed by solid-state photooxygenation in dye-crosslinked polystyrene beads and resulted in mixtures of diastereoisomeric hydroperoxides 2. Boron trifluoride catalyzed peroxyacetalization resulted in the formation of 3, as well as the 1,2,4-trioxanes 4 and 5, which were formed via acid catalyzed β-hydroperoxy alcohol cleavage.  相似文献   

3.
Three adducts have been prepared from Hg(CN)(2) and square planar M(II)(CN)(4)(2)(-) transition metal cyanides (M = Pt, Pd, or Ni, with d(8) electron shell) as solids. The structure of the compounds K(2)PtHg(CN)(6).2H(2)O (1), Na(2)PdHg(CN)(6).2H(2)O (2), and K(2)NiHg(CN)(6).2H(2)O (3) have been studied by single-crystal X-ray diffraction, XPS, Raman spectroscopy, and luminescence spectroscopy in the solid state. The structure of K(2)PtHg(CN)(6).2H(2)O consists of one-dimensional wires. No CN(-) bridges occur between the heterometallic centers. The wires are strictly linear, and the Pt(II) and Hg(II) centers alternate. The distance d(Hg)(-)(Pt) is relatively short, 3.460 A. Time-resolved luminescence spectra indicate that Hg(CN)(2) units incorporated into the structure act as electron traps and shorten the lifetime of both the short-lived and longer-lived exited states in 1 compared to K(2)[Pt(CN)(4)].2H(2)O. The structures of Na(2)PdHg(CN)(6).2H(2)O and K(2)NiHg(CN)(6).2H(2)O can be considered as double salts; the lack of heterometallophilic interaction between the remote Hg(II) and Pd(II) atoms, d(Hg)(-)(Pd) = 4.92 A, and Hg(II) and Ni(II) atoms, d(Hg)(-)(Ni) = 4.61 A, is apparent. Electron binding energy values of the metallic centers measured by XPS show that there is no electron transfer between the metal ions in the three adducts. In solution, experimental findings clearly indicate the lack of metal-metal bond formation in all studied Hg(II)-CN(-)-M(II)(CN)(4)(2)(-) systems (M = Pt, Pd, or Ni).  相似文献   

4.
The effects of alkyl, amino, phosphino, oxy, and thio moieties on the stability, multiplicity and reactivity of α-cyclopropylsilylenes with acyclic, cyclic, and unsaturated cyclic structures are compared and contrasted at B3LYP/AUG-cc-pVTZ//B3LYP/6-31G∗ level. The simultaneous stabilizing effects of heteroatom and cyclopropyl α-substituents on the above silylenes create the following trend of singlet-triplet energy gaps (?ES-T): amino ≈ oxy > thio > alkyl > phosphino. The ΔES-T values for all the above silylenes increase through cyclization, because cyclization stabilizes singlet states of all our α-heteroatom substitued silylenes while destabilizes their corresponding triplet states. The ΔES-T values for all the heteroatom substituted cyclic silylenes decrease upon unsaturation, due to the higher stabilization of triplet compared to the singlet state. Interestingly, isodesmic reactions showed the phosphino substituents stabilize the triplet more than the corresponding singlet states, not only in the unsaturated form but also in the acyclic and cyclic structures. This is in contrast to cyclopropyl which stabilizes singlet considerably more than the corresponding triplet states. The reactivity of the above silylenes is discussed in terms of nucleophilicity, and electrophilicity; showing phosphino- and aminocyclopropylsilylenes more nucleophilic than oxy- and thiocyclopropylsilylenes.  相似文献   

5.
A highly efficient, green and sustainable protocol for rhodium(III)-catalyzed C-H alkylation of heterocycles with allylic alcohols has been achieved, which affords a series of β-aryl ketones in high yields. The reaction proceeds smoothly in water under air, and works well with heterocycles such as indoles, indolines, pyrroles and carbazoles. Notably, the expensive rhodium catalyst in water could be easily separated from the organic products, and reused for at least five times without loss of its catalytic activity and selectivity, which is a promising, green and sustainable pathway for the synthesis of β-aryl ketones. To the best of our knowledge, this is the first example for the reuse of expensive rhodium catalyst in water.  相似文献   

6.
We use periodic DFT calculations at LDA and PBE level to investigate 3d transition metal dihalide (TMDH) monolayers in H- and T-phase. By analyzing the phonon dispersion, we have obtained a rough overview which combinations may form stable structures. We have focused on identifying and explaining trends in the predicted electronic properties. Although their geometric structures are simple, the associated electronic and magnetic properties are not as easy to understand. At first glance, it seems that there is no clear trend, as even isovalence-electronic TMDH monolayers formed from the same metal but different halides can feature different magnetic moments. The identification of potential trends is further complicated by the fact that for a significant number of species, LDA results and PBE results predict different ground-state electronic structures. By rigorously analyzing the potential energy surfaces associated with different magnetic moments, we could show that the apparent inconsistencies can be easily understood as a result of the differences in the relative energy between electronic states of different magnetic moments. We further show that the trends in the band gaps can be easily rationalized by an electron counting rule based on simple symmetry arguments.  相似文献   

7.
8.
The sensitivity of vibronic calculations to electronic structure methods and basis sets is explored and compared to accurate relative intensities of the vibrational bands of phenylacetylene in the S(1)(A(1)B(2)) ← S(0)(X(1)A(1)) transition. To provide a better measure of vibrational band intensities, the spectrum was recorded by cavity ringdown absorption spectroscopy up to energies of 2000 cm(-1) above the band origin in a slit jet sample. The sample rotational temperature was estimated to be about 30 K, but the vibrational temperature was higher, permitting the assignment of many vibrational hot bands. The vibronic structure of the electronic transition was simulated using a combination of time-dependent density functional theory (TD-DFT) electronic structure codes, Franck-Condon integral calculations, and a second-order vibronic model developed previously [Johnson, P. M.; Xu, H. F.; Sears, T. J. J. Chem. Phys. 2006, 125, 164331]. The density functional theory (DFT) functionals B3LYP, CAM-B3LYP, and LC-BLYP were explored. The long-range-corrected functionals, CAM-B3LYP and LC-BLYP, produced better values for the equilibrium geometry transition moment, but overemphasized the vibronic coupling for some normal modes, while B3LYP provided better-balanced vibronic coupling but a poor equilibrium transition moment. Enlarging the basis set made very little difference. The cavity ringdown measurements show that earlier intensities derived from resonance-enhanced multiphoton ionization (REMPI) spectra have relative intensity errors.  相似文献   

9.
A detailed analysis of the reaction profiles of the hydroamination reaction between ethylene and ammonia catalyzed by the diplatinum(II) [{Pt(NH2)(μ‐H)(PPh3)}2] complex is presented herein using density functional theory computational techniques. The coordinatively unsaturated 14e T‐shaped [Pt(NH2)(PPh3)H] species resulted from the dissociation of the diplatinum [{Pt(NH2)(μ‐H)(PPh3)}2] precatalyst are identified as the active catalytic species. All possible reaction pathways that constitute the entire catalytic cycle have exhaustively been investigated. Overall, the rate‐determining step of all catalytic cycles constructed was found to be the oxidative addition of ammonia that leads to the regeneration of the catalyst. According to the energy span model, the outer‐sphere mechanism for the hydroamination of ethylene with ammonia catalyzed by the diplatinum complexes is favored over the inner‐sphere one, whereas TOF values are in favor of the inner‐sphere mechanism. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Eight new organostannoxane-based multiredox assemblies containing-Schiff-base-triazole ligand peripheries have been readily synthesized by hydrolysis or solvothermal synthetic routes. The reactions of the diorganotin dichloride with the Schiff-base-containing-triazole ligand afford the following types: [(Me2Sn)2O2(Ln)]2 (n = 1, for 1) [(Me2Sn)2O(RO)(Ln)]2 (R = Et, n = 2, for 2; R = Me, n = 3, for 3), [(n-Bu2Sn)2O2(Ln)]2 (n = 1, for 4; n = 2, for 5; n = 3, for 6) and [(Me2Sn)2Ln2O]2 · L (n = 2; L = H2O for 7, L = CH3OH for 8). All the complexes were characterized by elemental analysis, IR, 1H, 13C and 119Sn spectra analyses. Except for complexes 4 and 6, the other complexes are also characterized by X-ray crystallography diffraction analyses. Complexes 1-3 and 5 show similar structures containing a Sn4O4 ladder-shaped skeleton in which the N atom from a corresponding thione-form deprotonated Schiff base coordinated to the exo tin atoms in monodentate chelating agent. Complex 7 and 8 show a novel framework containing a Sn2O2 symmetrical core with two N atoms from triazole moiety coordinated to tin atoms. Weak but significant intermolecular hydrogen bondings, C-H?π stacking or non-bonded S?S interaction lead to aggregation and self-assembly of these complexes into 1D, 2D or 3D supramolecular frameworks.  相似文献   

11.
In this work we present a detailed analysis of the activation free energies and averaged interactions for the Claisen and Cope rearrangements of chorismate and carbachorismate catalyzed by Bacillus subtilischorismate mutase (BsCM) using quantum mechanics/molecular mechanics (QM/MM) simulation methods. In gas phase, both reactions are described as concerted processes, with the activation free energy for carbachorismate being about 10-15 kcal mol(-)(1) larger than for chorismate, at the AM1 and B3LYP/6-31G levels. Aqueous solution and BsCM active site environments reduce the free energy barriers for both reactions, due to the fact that in these media the two carboxylate groups can be approached more easily than in the gas phase. The enzyme specifically reduces the activation free energy of the Claisen rearrangement about 3 kcal mol(-)(1) more than that for the Cope reaction. This result is due to a larger transition state stabilization associated to the formation of a hydrogen bond between Arg90 and the ether oxygen. When this oxygen atom is changed by a methylene group, the interaction is lost and Arg90 moves inside the active site establishing stronger interactions with one of the carboxylate groups. This fact yields a more intense rearrangement of the substrate structure. Comparing two reactions in the same enzyme, we have been able to obtain conclusions about the relative magnitude of the substrate preorganization and transition state stabilization effects. Transition state stabilization seems to be the dominant effect in this case.  相似文献   

12.
The unprecedented structural behavior of Co(3)(dipyridylamide)(4)Cl(2), characterized in two crystalline forms in which the tricobalt framework is either symmetric or highly nonsymmetric at room temperature is investigated by means of gradient-corrected DFT calculations. The isolated molecule is assigned a single energy minimum associated with a low-spin (doublet) electronic configuration. The optimal geometry closely reproduces the X-ray structure observed for the isomer displaying equivalent metal-metal distances. However, the ground-state potential energy surface is extremely shallow with respect to a distortion of the Co(3) framework. A "weak" distortion, similar to that observed for the unsymmetrical complex at low temperature (Deltad(Co-Co) = 0.08 A at 110 K) induces a destabilization of 1.1 kcal.mol(-1) only. The distortion observed at room temperature (Deltad(Co-Co) = 0.17 A) destabilizes the isolated complex by 4.2 kcal.mol(-1). These results are rationalized in terms of the "three-electron three-center" concept applied to the sigma-bonding electrons of the cobalt framework. A phenomenological model based upon the Heisenberg Hamiltonian successfully reproduces the calculated potential energy curve and assigns the relative stability of the symmetric structure to local forces (Pauli repulsion, ligand bite, etc.) distinct from delocalized sigma bonding. In view of these results, the two structures characterized from X-rays cannot be termed "bond-stretch isomers" according to the strict definition given by Parkin. To investigate the origin of the distorted form, an electric field was applied to the isolated molecule, but it did not shift the equilibrium position toward asymmetry, despite a strong polarization of the electron density. Finally, the quartet state of lowest energy ((4)A state) has an optimal structure that is distorted and that reproduces most of the distinctive features observed in the nonsymmetric structure. Despite the high relative energy calculated for this quartet state, we assign the occurrence of the nonsymmetric form and its extreme variability with temperature to a progressive population of this excited state as temperature increases.  相似文献   

13.
Twelve new organotin complexes with 4-sulfanylbenzoic acid of two types: RnSn[S(C6H4COOH)]4−n (I) (n = 3: R = Me 1, n-Bu 2, Ph 3; PhCH24; n = 2: R = Me 5; n-Bu 6, Ph 7, PhCH28) and R3Sn(SC6H4COO)SnR3 · mEtOH (II) (m = 0: R = Me 9, n-Bu 10, PhCH212; m = 2: R = Ph 11), along with the 4,4′-bipy adduct of 9, [Me3Sn(SC6H4COO)SnMe3]2(4,4-bipy) 13, have been synthesized. The coordination behavior of 4-sulfanylbenzoic acid is monodentate in 1-8 by thiol S atom but not carboxylic oxygen atom. While, in 9-13 it behaves as multidenate by both thiol S atom and carboxylic oxygen atoms. The supramolecular structures of 6, 11 and 13 have been found to consist of 1D molecular chains built up by intermolecular O-H?O, C-H?O or C-H?S hydrogen bonds. The supramolecular aggregation of 7 is 2D network determined by two C-H?O hydrogen bonds. Extended intermolecular C-H?O interactions in the crystal lattice of 9 link the molecules into a 2D network.  相似文献   

14.
We report a theoretical study of the NR4+salts (R = H; Me; Et) of the t-butylcalix[4]arenemonooxyanion L- inacetonitrile solution, to compare the endocomplexes NR4+ inside the cone of thehost) with the exo ones. For a given cation, wefind that the complexes display structures of similartype in the gas phase and in acetonitrile solution.Intrinsically, the endo forms are more stablethan exo ones, but they are less well solvated.As a result, exo complexes are predicted to bemore stable than the endo ones in acetonitrile.In the gas phase and in solution, the exocomplexes of NMe4+ and NEt4+display interesting examples of fluctional intimateion pairs, where the cation oscillates between theoxygen lower rim region of L- and exo stacking with the phenolic rings ofL-. Based on free energy perturbation calculations,we compare endo NH4+/NMe4+complexes and find that the hypotheticalNH4+ complex is more stable in acetonitrile solution.  相似文献   

15.
The paucity of coordination entities bearing (E)-N,N′-bis(heteroaryl)iminoisoindolines has prompted us to investigate coordination modes and supramolecular features of (E)-N,N′-bis(2-pyridyl)iminoisoindoline (2-pyimiso), a versatile iminobis(pyridyl) ligand. In this article we report the synthesis, spectroscopic characterization and crystal structure analysis of two Cd(II) : 2-pyimiso (1?:?2) bis-adducts, [CdX2(2-pyimiso)2] [X = Cl (1) or NCS (2)]. Our X-ray structural results reveal that 1 exhibits distorted tetrahedral coordination (four-coordinate geometry index τ4 = 0.92), whereas 2 displays six-coordinate Cd(II) and two four-membered chelate rings (bite angles = 52.5°), each comprising one Cd–Npy [2.247(2) Å] bond and one Cd?Nimine [2.809(21) Å] secondary interaction. Remarkably, in 2 each 2-pyimiso unit binds to Cd(II) according to an unusual bidentate coordination. The contributions of the Cd–N and Cd–Cl bond valences to the total metal valence for both 1 and 2 have been evaluated to confirm the coordination modes of 2-pyimiso, which can be interpreted in terms of Jørgensen’s principle of symbiosis. X-ray structure and Hirshfeld surface analyses have shown that the crystal structure of 1 is determined by two perpendicular 1-D chains formed by weak hydrogen bonds along the a- and c-axes, whereas the supramolecular architecture of 2 exhibits 2-D sheets parallel to the ab-plane interconnected by C–H?π interactions along the c-axis. A vibrational analysis of both products has been conducted at the DFT B3LYP-D3/LACV3P** level of calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号