首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasound is one means among others of producing emulsions mechanically. Droplet disruption in sonicated liquid-liquid systems is considered to be controlled by cavitation. Both hydrostatic pressure and gas content of the liquids influence the probability and intensity of cavitation. Continuous ultrasound emulsification experiments were carried out to elucidate the effect of these parameters on the result of droplet disruption. Maximum energy density in the apparatus decreases with increasing hydrostatic pressure, probably due to partial suppression of cavitation which is the main mechanism of power dissipation. At constant energy density there is no significant influence of hydrostatic pressure on the emulsification result, however. Corresponding results were obtained for the influence of the gas content. Gas saturation or partial degassing prior to emulsification lead to a shift in maximum energy density. But, again, at constant energy density no clear effect on the droplet size of the emulsion is observed.  相似文献   

2.
Ultrasound is an emerging and promising method for demulsification, which is highly affected by acoustic parameters and emulsion properties. Herein, a series of microscopic and dehydration experiments are carried out to investigate the parameter optimization of ultrasonic separation. The results show that the optimal acoustic parameters highly depend on the emulsion properties. For low frequency ultrasonic standing waves (USWs), mechanical vibrations not only facilitate droplet collision and coalescence, but also disperse the surfactant absorbed on the interface to decrease the interfacial strength. Therefore, low frequency ultrasound is suitable for separating emulsions with high viscosity and high interfacial strength. Increasing the energy density to produce moderate cavitation can increase demulsification efficiency. However, excessive cavitation results in secondary emulsification. In high frequency USWs, the droplets migrate directionally and form bandings, thereby promoting droplet coalescence. Therefore, high frequency ultrasound is favorable for separating emulsions with low dispersed phase content and small droplet size. Increasing the energy density can accelerate the aggregation of droplets, however, excessive energy density causes acoustic streaming that disturbs the aggregated droplets, resulting in reduced demulsification efficiency. This work presents rules for acoustic parameter optimization, further advancing industrial applications of ultrasonic separation.  相似文献   

3.
An ultrasonic microreactor with rough microchannels is presented in this study for oil-in-water (O/W) emulsion generation. Previous accounts have shown that surface pits or imperfections localize and enhance cavitation activity. In this study cavitation bubbles are localized on the rough microchannels of a borosilicate glass microreactor. The cavitation bubbles in the microchannel are primarily responsible for emulsification in the ultrasonic microreactor. We investigate the emulsification mechanism in the rough microchannels employing high-speed imaging to reveal the different emulsification modes influenced by the size and oscillation intensity of the cavitation bubbles. The effect of emulsification modes on the O/W emulsion droplet size distribution for different surface roughness and frequency is demonstrated. The positive effect of the frequency on minimizing the droplet size utilizing a reactor with large pits is presented. We also demonstrate microreactor systems for a successful generation of miniemulsions with high dispersed phase volume fractions up to 20%. The observed emulsification mechanism in the rough microchannel offers new insights into the utility and scale-up of ultrasonic microreactors for emulsification.  相似文献   

4.
In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200–600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50–70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.  相似文献   

5.
A commercial ultrasonic probe was used to study emulsification of an o/w system (5 wt% soybean oil stabilised with 1 wt% Tween 80 in water). Two different sets of experiments were performed.

Firstly, we investigated the effect of power, duty cycle and ultrasound time on the production of an oil-in-water emulsion from a coarse pre-emulsion mix. The droplets reached a stable size (0.7 μm) within 5 min independent of the power and duty cycle used.

Secondly, the mechanism of emulsification was studied by observing the emulsification process at an oil–water interface (no pre-mix) with a high-speed camera. Transient cavitation is thought to be responsible for acoustic emulsification; however there have been no measurements to relate the transient cavitation zone to the production of an emulsion. It has already been shown that the transient cavitation in probe systems is directly under the probe tip. High-speed observations showed that an emulsion could only be obtained if the interface was within a few millimetres of the probe tip. These results strongly suggest that the transient cavitation zone is responsible for the acoustic emulsification of oil.  相似文献   


6.
Ultrasonic-assisted treatment is an eco-friendly and cost-effective emulsification method, and the acoustic cavitation effect produced by ultrasonic equipment is conducive to the formation of stable emulsion. However, its effect on the underlying stability of low-molecular-weight oyster peptides (LOPs) functional-nutrition W1/O/W2 double emulsion has not been reported. The effects of different ultrasonic power (50, 75, 100, 125, and 150 W) on the stability of double emulsions and the ability to mask the fishy odor of LOPs were investigated. Low ultrasonic power (50 W and 75 W) treatment failed to form a well-stabilized double emulsion, and excessive ultrasound treatment (150 W) destroyed its structure. At an ultrasonic power of 125 W, smaller particle-sized double emulsion was formed with more uniform distribution, more whiteness, and a lower viscosity coefficient. Meanwhile, the cavitation effect generated by 125 W ultrasonic power improved storage, and oxidative stabilities, emulsifying properties of double emulsion by reducing the droplet size and improved sensorial acceptability by masking the undesirable flavor of LOPs. The structure of the double emulsion was further confirmed by optical microscopy and confocal laser scanning microscopy. The ultrasonic-assisted treatment is of potential value for the industrial application of double emulsion in functional-nutrition foods.  相似文献   

7.
Aiming at elucidating ultrasonic emulsification mechanisms, the interaction between a single or multiple acoustic cavitation bubbles and gallium droplet interface was investigated using an high-speed imaging technique. To our best knowledge, the moment of emulsification and formation of fine droplets during ultrasound irradiation were observed for the first time. It was found that the detachment of fine gallium droplets occurs from the water-gallium interface during collapse of big cavitation bubbles. The results suggest that the maximum size of cavitation bubble before collapsing is of prime importance for emulsification phenomena. Previous numerical simulation revealed that the collapse of big cavitation bubble is followed by generation of high-velocity liquid jet directed toward the water-gallium interface. Such a jet is assumed to be the prime cause of liquid emulsification. The distance between cavitation bubbles and water-gallium interface was found to slightly affect the emulsification onset. The droplet fragmentation conditions are also discussed in terms of the balance between (1) interfacial and kinetic energies and (2) dynamic and Laplace pressure during droplet formation.  相似文献   

8.
Ultrasonic emulsification (USE) assisted by cavitation is an effective method to produce emulsion droplets. However, the role of gas bubbles in the USE process still remains unclear. Hence, in the present paper, high-speed camera observations of bubble evolution and emulsion droplets formation in oil and water were used to capture in real-time the emulsification process, while experiments with different gas concentrations were carried out to investigate the effect of gas bubbles on droplet size. The results show that at the interface of oil and water, gas bubbles with a radius larger than the resonance radius collapse and sink into the water phase, inducing (oil–water) blended liquid jets across bubbles to generate oil-in-water-in-oil (O/W/O) and water-in-oil (W/O) droplets in the oil phase and oil-in-water (O/W) droplets in the water phase, respectively. Gas bubbles with a radius smaller than the resonance radius at the interface always move towards the oil phase, accompanied with the generation of water droplets in the oil phase. In the oil phase, gas bubbles, which can attract bubbles nearby the interface, migrate to the interface of oil and water due to acoustic streaming, and generate numerous droplets. As for the gas bubbles in the water phase, those can break neighboring droplets into numerous finer ones during bubble oscillation. With the increase in gas content, more bubbles undergo chaotic oscillation, leading to smaller and more stable emulsion droplets, which explains the beneficial role of gas bubbles in USE. Violently oscillating microbubbles are, therefore, found to be the governing cavitation regime for emulsification process. These results provide new insights to the mechanisms of gas bubbles in oil–water emulsions, which may be useful towards the optimization of USE process in industry.  相似文献   

9.
O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.  相似文献   

10.
Consumers’ preference for products with reduced levels of fat increased in the last years. Proteins and polysaccharides have an important role due to their functional and interaction properties because, when combined in ratios and pH of higher potential for electrostatic interactions they may act as emulsifiers or stabilizers. This study evaluated the ultrasound impact on the electrostatic interaction between pectin (PEC) and whey protein concentrate (WPC) at different WPC:PEC ratios (1:1 to 5:1), and its effect on the emulsification and stability of emulsions formulated with WPC:PEC blends (1:1, 4:1) at low soybean oil contents (5 to 15%). Zeta potential analysis showed greater interactions between biopolymers at pH 3.5, which was proven in FTIR spectra. Rheology and turbidimetry showed that the ultrasound reduced the suspension viscosity and the size of the biopolymer complexes. Suspensions were Newtonian, whereas the emulsions showed shear-thinning behavior with slight increase in apparent viscosity as a function of oil content, and remained stable for seven days, with small droplets (<8 μm) stabilized and entrapped in a pectin network evidenced by confocal laser microscopy. Sonication was successfully applied to emulsion stabilization, improving the functional properties of WPC:PEC blends and enabling their application as low-fat systems, providing healthier products to consumers.  相似文献   

11.
The present study numerically investigates liquid-jet characteristics of acoustic cavitation during emulsification in water/gallium/air and water/silicone oil/air systems. It is found that a high-speed liquid jet is generated when acoustic cavitation occurs near a minute droplet of one liquid in another. The velocity of liquid jet significantly depends on the ultrasonic pressure monotonically increasing as the pressure amplitude increases. Also, the initial distance between cavitation bubble and liquid droplet affects the jet velocity significantly. The results revealed that the velocity takes maximum values when the initial distance between the droplet and cavitation bubble is moderate. Surprisingly, the liquid jet direction was found to depend on the droplet properties. Specifically, the direction of liquid jet is toward the droplet in the case of water/gallium/air system, and vice versa the jet is directed from the droplet in the case of water/silicone oil/air system. The jet directionality can be explained by location of the high-pressure spot generated during the bubble contraction.  相似文献   

12.
When immiscible liquids are subjected to an ultrasonic field, they form emulsions. This principle has been used to improve the mass transfer characteristics of a liquid-liquid extraction process in microreactor systems. The formation of emulsion and its characteristics are prominently dependent on the properties of the liquids used and this also holds true for emulsion brought about by ultrasound. This paper focuses on the properties of fluids that are reported to have an influence on the cavitation behaviour, namely viscosity, interfacial tension and vapour pressure. These properties were examined by changing the solvent of the organic phase in the hydrolysis of p-nitrophenyl acetate. The study is performed by comparing pairs of solvents that are different in one property but similar in the other two. The pairs selected are toluene – chlorobenzene for viscosity, toluene – methyl Isobutyl ketone for interfacial tension and methyl isobutyl ketone – 2-Methyl tetrahydrofuran for vapour pressure effects. A qualitative study was performed with a high-speed camera in flow to understand the emulsification initiation mechanisms and behaviours. These findings were further explored by performing the sonicated emulsion in a batch-sonicated reactor. The quantitative analysis of the fluid properties was evaluated and compared based on the relative percentage increase in yield upon sonication with respect to their individual silent conditions. The quantitative results were further supported by the quantification of the emulsion performed with an FBRM probe. The results indicate a two times improvement in yield with solvent of lower viscosity as 2 times more droplets were formed in the emulsion. Both the solvent systems with higher interfacial tension and vapour pressure had an improved yield of 1.4 times owing to larger number of droplets formed.  相似文献   

13.
The use of ultrasound in various processes of the chemical industry has been a subject of research and development for many years. As regards in emulsification, apart from formulation variables, power is the most important parameter. Efficiency of emulsification processes may be followed and evaluated by measuring particle size distribution, which mainly governs the kinetic stability of such dispersions. Unfortunately, this kind of measurement must be performed at high dilution (low volume fraction of dispersed phase). The present work is devoted to the on-line study of ultrasound emulsification by means of a newly developed apparatus based on multiple light scattering, which allows us to determine average droplet diameter and its variations directly on concentrated media. The model system was an oil (kerosene)-in-water emulsion stabilized by a polyethoxylated sorbitan monostearate.  相似文献   

14.
The ultrasound-induced transformation of perfluorocarbon liquids to gases is of interest in the area of drug and gene delivery. In this study, three independent parameters (temperature, size, and perfluorocarbon species) were selected to investigate the effects of 476-kHz and 20-kHz ultrasound on nanoemulsion phase transition. Two levels of each factor (low and high) were considered at each frequency. The acoustic intensities at gas bubble formation and at the onset of inertial cavitation were recorded and subsequently correlated with the acoustic parameters. Experimental data showed that low frequencies are more effective in forming and collapsing a bubble. Additionally, as the size of the emulsion droplet increased, the intensity required for bubble formation decreased. As expected, perfluorohexane emulsions require greater intensity to form cavitating bubbles than perfluoropentane emulsions.  相似文献   

15.
Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20 wt%) were formulated (pH  7) using whey protein (3 wt%), three kinds of hydrocolloids (0.1–0.5 wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5 °C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool–heat cyclic method (40 to ?40 °C) was performed to examine stability via crystallization phenomena of the dispersed phase.Ultrasonication energy input duplication from 11 kJ to 25 kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS  1% after 10 days of storage) at 0.5 wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D50 = 0.615 μm compared to D50 = 1.3 μm using method A) with narrower particle size distribution and in viscosity reduction.DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5 wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions.  相似文献   

16.
The use of ultrasound to generate mini-emulsions (50 nm to 1 μm in diameter) and nanoemulsions (mean droplet diameter < 200 nm) is of great relevance in drug delivery, particle synthesis and cosmetic and food industries. Therefore, it is desirable to develop new strategies to obtain new formulations faster and with less reagent consumption. Here, we present a polydimethylsiloxane (PDMS)-based microfluidic device that generates oil-in-water or water-in-oil mini-emulsions in continuous flow employing ultrasound as the driving force. A Langevin piezoelectric attached to the same glass slide as the microdevice provides enough power to create mini-emulsions in a single cycle and without reagents pre-homogenization. By introducing independently four different fluids into the microfluidic platform, it is possible to gradually modify the composition of oil, water and two different surfactants, to determine the most favorable formulation for minimizing droplet diameter and polydispersity, employing less than 500 µL of reagents. It was found that cavitation bubbles are the most important mechanism underlying emulsions formation in the microchannels and that degassing of the aqueous phase before its introduction to the device can be an important factor for reduction of droplet polydispersity. This idea is demonstrated by synthetizing solid polymeric particles with a narrow size distribution starting from a mini-emulsion produced by the device.  相似文献   

17.
Ultrasonic emulsification of oil and water was carried out and the effect of irradiation time, irradiation power and physicochemical properties of oil on the dispersed phase volume and dispersed phase droplet size has been studied. The increase in the irradiation time increases the dispersed phase volume while decreases the dispersed phase droplets size. With an increase in the ultrasonic irradiation power, there is an increase in the fraction of volume of the dispersed phase while the droplet size of the dispersed phase decreases. The fractional volume of the dispersed phase increases for the case of groundnut oil-water system while it is low for paraffin (heavy) oil-water system. The droplet size of soyabean oil dispersed in water is found to be small while that of paraffin (heavy) oil is found to be large. These variations could be explained on the basis of varying physicochemical properties of the system, i.e., viscosity of oil and the interfacial tension. During the ultrasonic emulsification, coalescence phenomenon which is only marginal, has been observed, which can be attributed to the collision of small droplets when the droplet concentration increases beyond a certain number and the acoustic streaming strength increases.  相似文献   

18.
The oil in water (o/w) emulsions were prepared using aniline dissolved in toluene and LiCoO2 particles as stabilizers (Pickering emulsions). Pickering emulsions are stabilized by adsorbed solid particles instead of emulsifier molecules. The mean droplet diameter of emulsions was controlled by the mass ratio M (oil)/M (solid particles). The emulsions showed great stability during 3 days. The composite materials containing LiCoO2 and the conductive polymer polyaniline (PANI) have been prepared by means of polymerization of aniline emulsion stabilized by LiCoO2 particles. The composite materials were characterized by nanosphere and nanofiber-like structures. The nanofiber-like morphology of the powdered material was distinctly different of the morphologies of the parent materials. The electrochemical reactivity of PANI/LiCoO2 composites as positive electrode in a lithium battery was examined during lithium ion deinsertion and insertion by galvanostatic charge–discharge testing; PANI/LiCoO2 (1:4) composite materials exhibited the best electrochemical performance by increasing the reaction reversibility and capacity compared to that of the pristine LiCoO2 cathode. The first discharge capacity of PANI/LiCoO2 (1:4) was 167 mAh/g, while that of LiCoO2 was136 mAh/g.  相似文献   

19.
In most applications, nanoparticles are required to be in a well-dispersed state prior to commercialisation. Conventional technology for dispersing particles into liquids, however, usually is not sufficient, since the nanoparticles tend to form very strong agglomerates requiring extremely high specific energy inputs in order to overcome the adhesive forces. Besides conventional systems as stirred media mills, ultrasound is one means to de-agglomerate nanoparticles in aqueous dispersions. In spite of several publications on ultrasound emulsification there is insufficient knowledge on the de-agglomeration of nanoparticulate systems in dispersions and their main parameters of influence. Aqueous suspensions of SiO2-particles were stressed up to specific energies EV of 10(4) kJ/m3 using ultrasound. Ultrasonic de-agglomeration of nanoparticles in aqueous solution is considered to be mainly a result of cavitation. Both hydrostatic pressure of the medium and the acoustic amplitude of the sound wave affect the intensity of cavitation. Furthermore, the presence of gas in the dispersion medium influences cavitation intensity and thus the effectiveness of the de-agglomeration process. In this contribution both, the influence of these parameters on the result of dispersion and the relation to the specific energy input are taken into account. For this, ultrasound experiments were carried out at different hydrostatic pressure levels (up to 10 bars) and amplitude values (64-123 microm). Depending on the optimisation target (time, energy input,...) different parameters limit the dispersion efficiency and result. All experimental results can be explained with the specific energy input that is a function of the primary input parameters of the process.  相似文献   

20.
Sibo Wang  Hao Wen 《Molecular physics》2013,111(21):3325-3335
The rheological properties of heavy crude oil have a significant impact on the production, refining and transportation. In this paper, dissipative particle dynamics (DPD) simulations were performed to study the effects of the addition of light crude oil and emulsification on the rheological properties of heavy crude oil. The simulation results reflected that the addition of light crude oil reduced the viscosity effectively. The shear thinning behaviour of crude oil mixtures were becoming less distinct as the increase of the mass fraction of light crude oil. According to the statistics, the shear had an influence on the aggregation and spatial orientation of asphaltene molecules. In addition, the relationship between the viscosity and the oil mass fraction was investigated in the simulations of emulsion systems. The viscosity increased with the oil mass fraction slowly in oil-in-water emulsions. When the oil mass fraction was higher than 50%, the increase became much faster since systems had been converted into water-in-oil emulsions. The equilibrated morphologies of emulsion systems were shown to illustrate the phase inversion. The surfactant-like feature of asphaltenes was also studied in the simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号