首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We developed a novel nucleic acid hybridization method based on excimer formation. We used two different 16-mer oligonucleotide probes that had a combined continuous-sequence run that was complementary to a target 32-mer. Prior to hybridization, the adjacent terminal ends (i.e. the 3'-terminal of one probe and the 5'-terminal of the other probe) were each labeled with one pyrene residue. When these probes simultaneously hybridized to the target, a 495 nm broad fluorescence band was produced. The intensity of this band increased as the intensity of the pyrene monomer bands decreased, indicating that the 495 nm band was attributed to the pyrene excimer. The excimer fluorescence, easily differentiated from the monomer bands for emission wavelength, opens up a new way to perform homogeneous hybridization assays and in vivo imaging of nucleic acids.  相似文献   

2.
Molecular beacon DNA probes, containing 1-4 pyrene monomers on the 5' end and the quencher DABCYL on the 3' end, were engineered and employed for real-time probing of DNA sequences. In the absence of a target sequence, the multiple-pyrene labeled molecular beacons (MBs) assumed a stem-closed conformation resulting in quenching of the pyrene excimer fluorescence. In the presence of target, the beacons switched to a stem-open conformation, which separated the pyrene label from the quencher molecule and generated an excimer emission signal proportional to the target concentration. Steady-state fluorescence assays resulted in a subnanomolar limit of detection in buffer, whereas time-resolved signaling enabled low-nanomolar target detection in cell-growth media. It was found that the excimer emission intensity could be scaled by increasing the number of pyrene monomers conjugated to the 5' terminal. Each additional pyrene monomer resulted in substantial increases in the excimer emission intensities, quantum yields, and excited-state lifetimes of the hybridized MBs. The long fluorescence lifetime ( approximately 40 ns), large Stokes shift (130 nm), and tunable intensity of the excimer make this multiple-pyrene moiety a useful alternative to traditional fluorophore labeling in nucleic acid probes.  相似文献   

3.
In recent years, fluorescently labeled oligonucleotides have become a widely used tool in diagnostics, DNA sequencing, and nanotechnology. The recently developed (phenylethynyl)pyrenes are attractive dyes for nucleic acid labeling, with the advantages of long-wave emission relative to the parent pyrene, high fluorescence quantum yields, and the ability to form excimers. Herein, the synthesis of six (phenylethynyl)pyrene-functionalized locked nucleic acid (LNA) monomers M(1)-M(6) and their incorporation into DNA oligomers is described. Multilabeled duplexes display higher thermal stabilities than singly modified analogues. An increase in the number of phenylethynyl substituents attached to the pyrene results in decreased binding affinity towards complementary DNA and RNA and remarkable bathochromic shifts of absorption/emission maxima relative to the parent pyrene fluorochrome. This bathochromic shift leads to the bright fluorescence colors of the probes, which differ drastically from the blue emission of unsubstituted pyrene. The formation of intra- and interstrand excimers was observed for duplexes that have monomers M(1)-M(6) in both complementary strands and in numerous single-stranded probes. If more phenylethynyl groups are inserted, the detected excimer signals become more intense. In addition, (phenylethynyl)pyrenecarbonyl-LNA monomers M(4), M(5), and M(6) proved highly useful for the detection of single mismatches in DNA/RNA targets.  相似文献   

4.
We studied the peptide-induced membrane fusion process between small unilamellar vesicles (SUVs) and supported planar bilayers (SPBs) with the aim of developing a method for incorporating membrane components into SPBs. As fusogenic peptides, two analogues of the N-terminal region of an influenza membrane fusion protein hemaggulutinin, anionic E5 and cationic K5, were synthesized, and the membrane fusion was investigated using SPB and SUVs composed of phosphatidylcholine from egg yolk (EggPC). We directly visualized the process of lipid transfer from SUVs to SPB by total internal reflection fluorescence (TIRF) microscopy. The transfer of fluorescent lipids was effectively induced only by the combination of two peptides. The TIRF microscopy observations of single SUV fusion events also revealed that lipid membranes from SUV could completely fuse into the SPB. However, the presence of single peptide (either E5 or K5) rather inhibited the lipid transfer, presumably due to the electrostatic repulsion between SUVs and SPB. The opposite effects induced by the peptides indicate the possibility for a designed application of two peptides as a means to control the membrane fusion spatially and temporally.  相似文献   

5.
Several kinds of liposomes were sterilized at 121 degrees C for 20 min. They tended to aggregate after heat sterilization (HS) in saline, while no aggregation was observed in an isotonized sugar or polyol solution. The dispersions containing egg phosphatidylcholine (EggPC) with a high peroxide value (POV) turned slightly yellowish after HS. This color change was prevented by using EggPC with a low POV, hydrogenated EggPC (H-EggPC) or dipalmitoylphosphatidylcholine (DPPC). Nitrogen gas bubbling at neutral pH also prevented the color change, but vitamin E did not. The particle size of the EggPC liposomes extruded through a 0.4 micron membrane filter did not change significantly after HS, whereas the H-EggPC or DPPC liposomes extruded through a 0.8 micron membrane filter tended to be reduced in size. On this change the type of medium had a considerable influence. The anionic 6-carboxyfluorescein leaked from the negatively charged liposomes (EggPC/cholesterol (Chol)/egg phosphatidylglycerol) during HS, while no leakage was observed from the positively charged liposomes (EggPC/Chol/stearylamine) not only during HS but also during a long period of storage. It was suggested that sterilization of liposomes by heating was practicable as well as that by filtration, if the liposomes were prepared as follows: the charged liposomes made of lipids with low POV's were dispersed in a sugar or polyol solution adjusted to nearly pH 6.5, where the amount of dissolved oxygen was minimized. An ionic water-soluble drug had to be encapsulated in the oppositely charged liposomes.  相似文献   

6.
以芘为荧光探针,探讨了有机硅-丙烯酸酯核壳乳液聚合过程中,芘的第一振动峰(373 nm处)与第三振动峰(384 nm处)荧光强度的比值I1/I3与乳化剂、有机硅单体(D4)和引发剂(KPS)用量之间的关系,并结合聚合过程中探针芘的I1/I3峰值与单体转化率及乳胶粒形态演变之间的关系,研究了核壳结构有机硅-丙烯酸酯乳液的聚合行为.研究结果表明,探针芘的I1/I3峰值随乳化剂用量,D4用量,KPS用量不同发生相应的变化,随单体转化率的增加而增大.当乳化剂用量、D4用量、KPS与总单体的质量比依次为2 g、8 g、0.7%时,得到的乳液具有优良的综合性能.聚合反应过程中,当种子乳胶粒转变为核壳乳胶粒时,芘的I1/I3峰值仍呈现出明显的转变,说明有机硅-丙烯酸酯核壳乳液具有互穿聚合物网络结构.因此,荧光探针可用于研究有机硅-丙烯酸酯核壳乳液聚合反应进程.  相似文献   

7.
Ubiquinone-10 plays a central role in energy production and its reduced form, ubiquinol-10 is also capable of acting as a potent radical scavenging antioxidant against membrane lipid peroxidation. Efficiency of this protection depends mostly on its localization in lipid bilayer. The intrinsic fluorescence of ubiquinol-10 and of the exogenous probe, Laurdan, has been used to determine the location of ubiquinol-10 in unilamellar liposomes of egg phosphatidylcholine (EggPC) and dimyristoyl phosphatidylcholine. Laurdan fluorescence moiety is positioned at the hydrophilic-hydrophobic interface of the phospholipid bilayer and its parameters reflect the membrane polarity and microheterogeneity, which we have used to explore the coexistence of microdomains with distinct physical properties. In liquid-crystalline bilayers ubiquinol has a short fluorescence lifetime (0.4 ns) and a high steady-state anisotropy. In a concentration-dependent manner, ubiquinol-10 influences the Laurdan excitation, emission and generalized polarization measurements. In EggPC liposomes ubiquinol-10 induces a decrease in membrane water mobility near the probe, while in dimyristoyl liposomes a decrease in the membrane water content was found. Moreover the presence of ubiquinol results in the formation of coexisting phospholipid domains of gel and liquid-crystalline phases. The results indicate that ubiquinol-10 molecules are mainly located at the polar-lipid interface, inducing changes in the physico-chemical properties of the bilayer microenvironment.  相似文献   

8.
The pyrene probe and pyrene-labeled oligonucleotides (ODNs) probe are expected to be candidates as fluorescent probe for DNA assay. In particular, label-free detection is a very hot because of its simpleness, speediness and cheapness. Herein, we have investigated the use of a pyrenylakylammonium salt, a novel fluorescent probe for the detection of one single nucleotide polymorphism (SNP) in double stranded DNA. After S1 nuclease digestion, the pyrene probes bind electrostatically to the perfect complement DNA and emit a strong excimer emission. However, treatment of the non-complementary DNA with S1 nuclease caused nucleotide fragments of less than 5 bases, which could not induce excimer emission. By comparing ratio of excimer to monomer fluorescence between normal and mutant DNA after S1 nuclease digestion, One-base mutation in DNA was detected easily. This new method may be applied to the detection of SNP.  相似文献   

9.
Frontal polymerization (FP) of poly(ethylene glycol) diacrylate (PEGDA) was carried out using benzoyl peroxide (BPO) as radical initiator. In addition, a pyrene containing monomer, 1‐pyrenebutyl acrylate (PyBuAc), was incorporated as a fluorescent probe in order to obtain luminescent materials with different chromophore contents. The resulting polymers were characterized by FT‐IR spectroscopy in the solid state and their thermal properties were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the optical properties of these materials were studied by absorption and fluorescence spectroscopy. The maximum amount of the incorporated pyrene‐containing monomer into the polymer matrix was limited to 1 wt % by the polymerization process. The obtained labeled polymers poly(PEGDA‐co‐PyBuAc) exhibited a broad absorption band at 345 nm. The fluorescence spectra of these polymers exhibited mainly “monomer emission” so that no excimer emission was observed. It is possible to tune the color of the emitted light by varying the pyrene content in the samples. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2890–2897  相似文献   

10.
Protein labeling with fluorogenic probes is a powerful method for the imaging of cellular proteins. The labeling time and fluorescence contrast of the fluorogenic probes are critical factors for the precise spatiotemporal imaging of protein dynamics in living cells. To address these issues, we took mutational and chemical approaches to increase the labeling kinetics and fluorescence intensity of fluorogenic PYP‐tag probes. Because of charge‐reversal mutations in PYP‐tag and probe redesign, the labeling reaction was accelerated by a factor of 18 in vitro, and intracellular proteins were detected with an incubation period of only 1 min. The brightness of the probe both in vitro and in living cells was enhanced by the mutant tag. Furthermore, we applied this system to the imaging analysis of bromodomains. The labeled mutant tag successfully detected the localization of bromodomains to acetylhistone and the disruption of the bromodomain–acetylhistone interaction by a bromodomain inhibitor.  相似文献   

11.
Protein labeling with fluorogenic probes is a powerful method for the imaging of cellular proteins. The labeling time and fluorescence contrast of the fluorogenic probes are critical factors for the precise spatiotemporal imaging of protein dynamics in living cells. To address these issues, we took mutational and chemical approaches to increase the labeling kinetics and fluorescence intensity of fluorogenic PYP‐tag probes. Because of charge‐reversal mutations in PYP‐tag and probe redesign, the labeling reaction was accelerated by a factor of 18 in vitro, and intracellular proteins were detected with an incubation period of only 1 min. The brightness of the probe both in vitro and in living cells was enhanced by the mutant tag. Furthermore, we applied this system to the imaging analysis of bromodomains. The labeled mutant tag successfully detected the localization of bromodomains to acetylhistone and the disruption of the bromodomain–acetylhistone interaction by a bromodomain inhibitor.  相似文献   

12.
Intracellular protein labeling with small molecular probes that do not require a washing step for the removal of excess probe is greatly desired for real-time investigation of protein dynamics in living cells. Successful labeling of proteins on the cell membrane has been performed using mutant β-lactamase tag (BL-tag) technology. In the present study, intracellular protein labeling with novel cell membrane permeable probes based on β-lactam prodrugs is described. The prodrug-based probes quickly permeated the plasma membranes of living mammalian cells, and efficiently labeled intracellular proteins at low probe concentrations. Because these cell-permeable probes were activated only inside cells, simultaneous discriminative labeling of intracellular and cell surface BL-tag fusion proteins was attained by using cell-permeable and impermeable probes. Thus, this technology enables adequate discrimination of the location of proteins labeled with the same protein tag, in conjunction with different color probes, by dual-color fluorescence. Moreover, the combination of BL-tag technology and the prodrug-based probes enabled the labeling of target proteins without requiring a washing step, owing to the efficient entry of probes into cells and the fast covalent labeling achieved with BL-tag technology after bioactivation. This prodrug-based probe design strategy for BL-tags provides a simple experimental procedure with application to cellular studies with the additional advantage of reduced stress to living cells.  相似文献   

13.
A fluorogenic probe for bacteria imaging was reported. The binding with anionic bacterial surfaces disassembled the self-assembly probe to turn-on the fluorescence and shift pyrene monomer/excimer ratiometric signals.  相似文献   

14.
This study represents a unique example where the self-assembly of five amphiphilic polypeptides was monitored as a function of their hydrophilic-to-lipophilic balance (HLB). The HLB was tuned by preparing a series of polypeptides with aspartic acid (Asp) and phenylalanine (Phe) according to the sequence (Asp(x)Phe(y)) where x and y vary from 1 to 3. The self-assembly of the (Asp(x)Phe(y))(n) polypeptides with M(w) values ranging from 8 to 12 K was studied in solution by fluorescence quenching and nonradiative energy transfer (NRET) fluorescence experiments. Dynamic (DLS) and static (SLS) light scattering studies were used to complement the results obtained. The fluorescence quenching experiments conducted with the chromophore pyrene used as a free probe, physically bound to the polypeptides via hydrophobic interactions, demonstrated that the chromophore was less exposed to the solution for the sequences having a higher hydrophobic character. Protective quenching was also observed for those polypeptides randomly labeled with pyrene where the phenylalanine content was high, whereas pyrene was found to be fully exposed to the quencher for the polypeptides having more hydrophilic sequences. NRET used to probe interpolymeric association was not observed between a naphthalene and a pyrene labeled polypeptide for the polypeptide sequences which were richer in aspartic acid, whereas energy transfer took place with the more hydrophobic polypeptides. This observation led to the conclusion that those sequences with a higher content of aspartic acid essentially generate unimolecular polymeric micelles, whereas those with a higher content of phenylalanine generate polymeric aggregates which offer protection from the solvent to their hydrophobic cargo. The presence of these polymeric aggregates was also confirmed by DLS and SLS studies which suggest that species 100-200 nm in diameter are present in solution.  相似文献   

15.
The process of excimer formation was studied for a series of pyrene end-labeled polystyrenes (PS(X)-Py 2 where X is the polymer molecular weight equal to 3, 4.5, 8, 12.7, and 14.6 K) and two series of polystyrenes randomly labeled with pyrene (CoE-PS and CoA-PS) in seven different solvents. The solvent viscosities ranged from 0.41 to 1.92 mPa x s, while the solvent quality ranged from good to poor solvents for polystyrene, as determined by intrinsic viscosity measurements. Steady-state fluorescence spectra of the pyrene-labeled polymers were acquired, and the excimer to monomer ratios showed that excimer formation increased strongly with a decrease in solvent viscosity. The monomer and excimer time-resolved fluorescence decays were also acquired and fitted globally to either the Birks' scheme or the fluorescence blob model (FBM) for the end- or randomly labeled polymers, respectively. All parameters reporting on the long-range polymer chain dynamics (LRPCD) obtained from the analysis of the fluorescence data acquired with the PS(X)-Py 2, CoE-PS, and CoA-PS series yielded virtually identical trends, demonstrating that these fluorescence experiments yield results that are internally consistent with one another. Considering the substantial advantages associated with the preparation and study of randomly labeled polymers, this report presents an appealing case for the use of randomly labeled polymers in the study of LRPCD.  相似文献   

16.
无机盐对β-环糊精空腔微环境影响的荧光探针研究   总被引:2,自引:0,他引:2  
基于芘的单体荧光光谱振动结构与其所处环境极性的相关性, 研究了碱金属氯化物对β-环糊精(β-CD)空腔微环境的影响。盐类的引入导致β-CD空腔极性减小, 芘/β-CD包络物形成常数增大。结果表明疏水相互作用是包络物形成动力之一; 盐类的引入除改变溶液的离子强度, 还与β-CD分子间存在着特殊的相互作用, 后者是导致环糊精空腔性质变化的根本原因。详细探讨了盐与β-CD分子间的作用本质。  相似文献   

17.
The review focuses on the unique spectral features of pyrene that can be utilized to investigate protein structure and conformation. Pyrene is a fluorescent probe that can be attached covalently to protein side chains, such as sulfhydryl groups. The spectral features of pyrene are exquisitely sensitive to the microenvironment of the probe: it exhibits an ensemble of monomer fluorescence emission peaks that report on the polarity of the probe microenvironment, and an additional band at longer wavelengths, the appearance of which reflects the presence of another pyrene molecule in spatial proximity (~10 ?). Its high extinction coefficient allows us to study labeled proteins in solution at physiologically relevant concentrations. The environmentally- and spatially-sensitive features of pyrene allow monitoring protein conformation, conformational changes, protein folding and unfolding, protein-protein, protein-lipid and protein-membrane interactions.  相似文献   

18.
Templer RH  Castle SJ  Curran AR  Rumbles G  Klug DR 《Faraday discussions》1998,(111):41-53; discussion 69-78
In this work we present data from a homologous series of di-pyrenyl phosphatidylcholine (dipyPC) probes which can sense lateral pressure variations in the chain region of the amphiphilic membrane (lateral pressures are tangential to the interface). The dipyPC has pyrene moieties attached to the ends of equal length acyl chains on a phosphatidylcholine molecule. Ultraviolet stimulation produces both monomer and excimer fluorescence from pyrene. At low dilutions of dipyPC in model membranes the excimer signal is entirely intra-molecular and since it depends on the frequency with which the pyrene moieties are brought into close proximity, the relative intensity of the excimer to monomer signal, eta, is a measure of the pressure. We synthesised or purchased dipyPC probes with the pyrene moieties attached to acyl chains having 4, 6, 8 and 10 carbon atoms and then measured eta in fully hydrated bilayers composed of dioleoylphosphatidylcholine and dioleoylphosphatidylethanolamine (DOPC and DOPE respectively). Although the resolution of our measurements of lateral pressure as a function of distance into the monolayer was limited, we did observe a dip in the excimer signal in the region of the DOPC/DOPE cis double bond. As we isothermally increased the DOPE composition, and hence the desire for interfacial curvature, we observed, as expected, that the net excimer signal increased. However this net increase was apparently brought about by a transfer of pressure from the region around the glycerol backbone to the region near the chain ends, with the lateral pressure dropping above the cis double bond but increasing at a greater rate beyond the double bond.  相似文献   

19.
The azide-alkyne cycloaddition provides a powerful tool for bio-orthogonal labeling of proteins, nucleic acids, glycans, and lipids. In some labeling experiments, e.g., in proteomic studies involving affinity purification and mass spectrometry, it is convenient to use cleavable probes that allow release of labeled biomolecules under mild conditions. Five cleavable biotin probes are described for use in labeling of proteins and other biomolecules via azide-alkyne cycloaddition. Subsequent to conjugation with metabolically labeled protein, these probes are subject to cleavage with either 50 mM Na(2)S(2)O(4), 2% HOCH(2)CH(2)SH, 10% HCO(2)H, 95% CF(3)CO(2)H, or irradiation at 365 nm. Most strikingly, a probe constructed around a dialkoxydiphenylsilane (DADPS) linker was found to be cleaved efficiently when treated with 10% HCO(2)H for 0.5 h. A model green fluorescent protein was used to demonstrate that the DADPS probe undergoes highly selective conjugation and leaves a small (143 Da) mass tag on the labeled protein after cleavage. These features make the DADPS probe especially attractive for use in biomolecular labeling and proteomic studies.  相似文献   

20.
A new pyrene-based fluorescent probe for the determination of critical micelle concentrations (CMC) is described. The title compound 1 is obtained in five steps, starting from pyrene. Fluorescence spectroscopic properties of 1 are studied in homogeneous organic solvents and aqueous micellar solutions. In a wide range of organic solvents, probe 1 exhibits a characteristic monomer emission of the pyrene fluorophore, with three distinct peak maxima at 382, 404, and 425 nm. The spectra change dramatically in aqueous solution, where no monomer emission of the pyrene fluorophore is detected. Instead, only strong excimer fluorescence with a broad, red-shifted emission band at lambda(max) = 465 nm is observed. In micellar aqueous solution, a superposition of the monomer and excimer emission is found. The appearance of the monomer emission in micellar solution can be explained on the basis of solubilization of 1 by the surfactant micelles. The ratio of the monomer to excimer fluorescence intensities of 1 is highly sensitive to changes in surfactant concentration. This renders 1 a versatile and sensitive probe molecule for studying the micellization of ionic and nonionic surfactants. For a representative selection of common surfactants, the critical micelle concentrations in aqueous solution are determined, showing excellent agreement with established literature data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号