首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We present a survey over recent studies of the volume transition in colloidal core-shell particles composed of a solid poly(styrene) core and a shell of a thermosensitive crosslinked polymer chains. The thermosensitive shell is built up from poly(N-isopropylacrylamide) chains (PNIPA) crosslinked by N,N′-methylenbisacrylamide (BIS). In addition, particles containing acrylic acid (AA) as comonomer have been synthesized and investigated. The volume transition of these particles have been studied by dynamic light scattering (DLS) and by small-angle X-ray scattering (SAXS). In all cases analyzed so far the volume transition was found to be continuous. This finding shows that the core-shell microgels behave in a distinctively different manner than ordinary thermosensitive gels: The crosslinked chains in the shell are bound to a solid boundary independent of temperature. The spatial constraint by this boundary decreases the maximum degree of swelling but also prevents a full collapse of the network above the volume transition.  相似文献   

2.
Thick single-crystalline fcc colloidal crystals exhibiting structural color are obtained by a solvent evaporation method from silica colloidal particle suspensions. A periodically ordered interconnecting porous structure can be imprinted in thermosensitive N-isopropylacrylamide (NIPA) gels by using the colloidal crystals as templates. The porous structure endows a structural color to the NIPA gels. We find that the peak position of the reflection spectra from the porous gels (lamdamax') is expressed as a function of the swelling degree and is synchronized with the change in the swelling degree. The color can be precisely tuned by simply changing the amount of the monomer and the cross-linker in the pre-gel solutions. We can estimate the linear expansion factor (> or =1) of the subchains by comparing the peak position at a given situation (lamdamax') and the reference state (lamdamax,0'), in which the subchains behave as Gaussian coils. Creating the periodically ordered structure, which is similar in size to the wavelength of optical light, in the gels allows us to determine the behavior of polymer chains by observing the structural color.  相似文献   

3.
We report a study of colloidal thermosensitive core-shell particles by cryo-transmission electron microscopy (cryo-TEM). The particles consist of a solid core of poly(styrene), onto which a network of cross-linked poly(N-isopropylacrylamide) (PNIPAM) is affixed. In water, the shell of these particles swells when the temperature is low. Raising the temperature above 32 degrees C leads to a marked shrinking of the shell. In this letter, we present the first study of these core-shell particles by cryo-TEM in situ, that is, in aqueous solution. We demonstrate that the core-shell particles are well-defined and exhibit a narrow size distribution. In particular, the PNIPAM shell is compact and has a defined outer surface of a slightly irregular shape. The micrographs show that there are density fluctuations within the network. Cryo-TEM of the system above and below the transition temperature furnishes information about the thermosensitive particles that had not been available through other methods employed in previous investigations.  相似文献   

4.
The ordering of polystyrene colloidal particles floating on the surface of glycol film, forming a two-dimensional system,was studied via an optical microscope. We have observed that the interfacial colloidal particles crystallized to form a two-dimensional triangular lattice with lots of point defects and grain boundaries. The interactions between the interfacial colloidal particles are also analyzed.  相似文献   

5.
Two types of thermosensitive opal-structured hydrogel systems, "interconnected" and "trapped" gel particle arrays, were newly developed by extremely simple methods using silica colloidal crystal as a template. Although both systems diffract visible light following Bragg's law combined with Snell's law, the temperature dependences of their optical properties were quite different. The "interconnected" array exhibited a reversible change in the peak values of the reflection spectra, mainly determined by the swelling ratio of the hydrogel, as a function of the water temperature. Since the swelling ratio is dominant over the peak value, we can observe water temperature through the color of the interconnected type of gel membrane. The "trapped" array revealed a reversible change in the peak intensity of the reflection spectra with the change in temperature, whereas no change in the peak position was observed. We can interpret this phenomenon in the following ways. As the rise in temperature causes a decrease in the water content of the NIPA gel particles, the gel particles becomes stickier on the cavity wall of polystyrene PPM. This may induce a disturbance in the ordered array of the gel particles and form many layers of rough surfaces in the inverse opal structure of the PPM. This situation may lead to the stronger diffused reflection of light from the gel particles, resulting in the decrease in peak intensity at higher temperatures.  相似文献   

6.
An investigation of the volume transition in thermosensitive core–shell particles by dynamic light scattering (DLS) is presented. The core of the particles consists of polystyrene (diameter 118 nm), whereas the thermosensitive shell is composed of a network of poly (N-isopropylacrylamide) containing 2 mol% acrylic acid counits. The hydrodynamic radius of these particles as determined by DLS decreases in a continuous manner when raising the temperature. It is shown that the volume transition in the core–shell microgels remains continuous for a wide range of ionic strengths and pH values. This behavior is opposite to that of macrogels of the same chemical composition, which undergo a discontinuous volume transition. The present investigation therefore demonstrates that affixing the network to solid colloidal particles profoundly alters the volume transition of thermosensitive networks. The reason is that shrinking can take place only along the radial direction of the particles. The solid core thus exerts a strong spatial constraint onto the network, which leads to the observed behavior. Received: 29 March 1999 Accepted in revised form: 16 July 1999  相似文献   

7.
The synthesis of poly(N-ethylmethacrylamide) (NEMAM) thermosensitive particles functionalized with phenylboronic acid (PhBA) groups has been performed by emulsion/precipitation polymerization of NEMAM in water at 90 °C, using ethylene glycol dimethacrylate (EGDMA) as an hydrophobic crosslinker, phenylboronic acid methacrylamide (PhBAMA) as a functional monomer, and potassium persulfate (KPS) as an initiator. The influences of the PhBAMA concentration and mode of monomer addition (batch or shot-growth processes) have been examined both on the polymerization kinetics and on the physicochemical and colloidal properties of the final particles. Results have been discussed according to the ionogenic and hydrophobic nature of the functional monomer. We have directly and clearly provided evidence that PBA was successfully incorporated at the particle surface by using ESCA analysis, especially when using a shot-growth process, a result that was indirectly confirmed by investigating the electrophoretic mobility behavior of the various latexes as a function of pH.  相似文献   

8.
We report the formation of novel thermosensitive hybrid core-shell particles via in situ synthesis of gold nanoparticles using thermosensitive core-shell particles as a template. The template core-shell particles, with cores composed mainly of poly(glycidyl methacrylate) (GMA) and shells composed mainly of poly(N-isopropylacrylamide) (PNIPAM), were synthesized in aqueous medium, and functional groups such as thiol groups were incorporated into each particle. We found that these particles containing thiol groups were effective for the in situ synthesis of gold nanoparticles in long-term storage. The obtained hybrid particles exhibited a reversible color change from red to purple, which originated from the surface plasmon resonance of gold nanoparticles and which was temperature-dependent in the range of 25-40 degrees C. In addition to their thermosensitive property, the hybrid particles exhibited the unique characteristic of uniform distribution on a solid substrate. The particles obtained by this approach have potential thermosensitive applications such as in sensors and photonic or electronic devices.  相似文献   

9.
We present a new method for laser direct writing in self-assembled hydrogel microparticle colloidal crystals via photothermal excitation of co-assembled colloidal Au particles. Close-packed colloidal crystals are assembled from approximately 224 nm diameter, thermoresponsive, poly-N-isopropylacrylamide hydrogel microparticles (microgels); these crystals display sharp Bragg diffraction peaks in the mid-visible region of the spectrum due to the periodic dielectric function of the assembly. Raising the temperature of the crystal above the characteristic volume phase transition temperature of the microgel particles results in a reversible melting of the crystalline material due to the particle-based deswelling event. This transition can be used either to anneal defects from the crystalline material or to controllably and reversibly convert the assembly from the colored, crystalline state to a nondiffracting glassy material. Crystal-to-glass transitions are similarly accomplished via photothermal excitation when 16 nm diameter colloidal Au particles are co-assembled with the responsive microgels. Excitation of the colloidal Au plasmon absorption with a frequency doubled Nd:YAG laser (lambda = 532 nm) results in optically directed conversion of either glasses to crystals or crystals to glasses, depending on the initial state of the assembly and the illumination time. These results represent a fundamentally new method for the patterning of self-assembled photonic materials.  相似文献   

10.
We examine the spatial distribution of fluorescent-labeled charged polystyrene (PS) particles (particle volume fraction ? = 0.0001 and 0.001, diameter d = 183 and 333 nm) added to colloidal crystals of charged silica particles (? = ?(s) = 0.035-0.05, d = 118 nm). At ?(s) = 0.05, the PS particles were almost randomly distributed in the volume-filling polycrystal structures before the grain growth process. Time-resolved confocal laser scanning microscopy observations reveal that the PS particles are swept to the grain boundaries of the colloidal silica crystals owing to grain boundary migration. PS particles with d = 2420 nm are not excluded from the silica crystals. We also examine influences of the impurities on the grain growth laws, such as the power law growth, size distribution, and existence of a time-independent distribution function of the scaled grain size.  相似文献   

11.
We report the assembly of colloidal particles into confined arrangements and patterns on various cleaned and chemically modified solid substrates using a method which we term "confined dewetting lithography" or CDL for short. The experimental setup for CDL is a simple deposition cell where an aqueous suspension of colloidal particles (e.g., polystyrene spheres) is placed between a floating deposition template (i.e., metal microgrid) and the solid substrate. The voids of the deposition template serve as an array of micrometer-sized reservoirs where several hydrodynamic processes are confined. These processes include water evaporation, meniscus formation, convective flow, rupturing, dewetting, and capillary-bridge formation. We discuss the optimal conditions where the CDL has a high efficiency to deposit intricate patterns of colloidal particles using polystyrene spheres (PS; 4.5, 2.0, 1.7, 0.11, 0.064 microm diameter) and square and hexagonal deposition templates as model systems. We find that the optimization conditions of the CDL method, when using submicrometer, sulfate-functionalized PS particles, are primarily dependent on minimizing attractive particle-substrate interactions. The CDL methodology described herein presents a relatively simple and rapid method to assemble virtually any geometric pattern, including more complex patterns assembled using PS particles with different diameters, from aqueous suspensions by choosing suitable conditions and materials.  相似文献   

12.
Refluxing of a solution of poly(vinyl alcohol) and rhodium(III) chloride in methanol-water gives a colloidal dispersion of rhodium which is an effective catalyst for hydrogenation of cyclohexene in methanol at 30°C under atmospheric hydrogen pressure. Formaldehyde is produced quantitatively with the reduction of rhodium(III) chloride to metallic rhodium. The rhodium particles in the colloidal dispersion are found to consist of two kinds of particles, about 8 and 40 Å in diameter by electron microscopy. The sizes of the small (8 Å) and large (40 Å) particles are almost constant during the course of refluxing. The number of small particles, which is the great majority of particles at the early stage of refluxing, gradually decreases; concurrently the number of large particle increases on prolonged refluxing. An absorption peak appears at 260 nm at the early stage of refluxing. The presence of the 260 nm peak, which indicates the coordination of poly(vinyl alcohol) to rhodium(III) ion, is indispensable for the formation of a homogeneous colloidal dispersion of rhodium. The addition of ethylenediamine inhibits the formation of colloidal rhodium in refluxing. The catalytic activity of colloidal dispersion of rhodium is dependent upon the concentration of rhodium(III) chloride charged and is independent of that of poly(vinyl alcohol). The formation mechanism of colloidal rhodium is discussed.  相似文献   

13.
We report novel thermosensitive hybrid core-shell particles via in situ gold nanoparticle formation using thermosensitive core-shell particles as a template. This method for the in situ synthesis of gold nanoparticles with microgel interiors offers the advantage of eliminating or significantly reducing particle aggregation. In addition, by using thermosensitive microgel structures in which the shell has thermosensitive and gel properties in water--whereas the core itself is a water-insoluble polymer--we were able to synthesize the gold nanoparticles only at the surface of the core, which had reactive sites to bind metal ions. After the gold nanoparticles were synthesized, electroless gold plating was carried out to control the thickness of the gold nanoshells. The dispersions of the obtained hybrid particles were characterized by dynamic light scattering and UV-vis absorption spectroscopy, and the dried particles were also observed by electron microscopy. Adaptation of the technique shown here will create a number of applications as optical, electronic, and biomedical functional materials.  相似文献   

14.
We experimentally investigate the dynamics of particles constituting grain boundaries in a two-dimensional colloidal crystal, using video-microscopy. A clear plateau in the mean square displacement of the grain boundary particles is found, followed by an upswing indicative of cage breaking. The van Hove correlation functions and the non-Gaussian parameter show that grain boundary particle dynamics are highly heterogeneous. Furthermore, we identified clusters of cooperatively moving particles and analyzed the time-dependence of the weight-averaged mean cluster size. We find good correlation between the behavior of the mean square displacement, and the time dependence of the non-Gaussian parameter and the cluster size, as also reported for various supercooled systems. Our results therefore provide experimental support for the similarity between particle dynamics in grain boundaries and in supercooled liquids as suggested by recent computer simulations.  相似文献   

15.
A 2D close-packed array of thermosensitive microgel beads was prepared by the double-template polymerization method. First, a 2D colloidal crystal of silica beads with 10 microm diameter was obtained by the solvent evaporation method. This monolayer of colloidal crystals can serve as the first template for the preparation of macroporous polystyrene. The macroporous polystyrene trapping the crystalline order can be used as a negative template for fabricating gel beads arrays. A functional surface using thermosensitive poly(N-isopropylacrylamide) gel beads array was fabricated by the double-template polymerization method.  相似文献   

16.
A novel soft material comprising thermosensitive poly(benzyl methacrylate)-grafted silica nanoparticles (PBnMA-g-NPs) and the ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)amide ([C(2)mim][NTf(2)]), was fabricated. The thermosensitive properties were studied over a wide range of particle concentrations and temperatures. PBnMA-g-NPs in the IL underwent the lower critical solution temperature (LCST) phase transition at lower temperatures with a broader transition temperature range as compared to the free PBnMA solution. Highly concentrated suspensions formed soft glassy colloidal arrays (SGCAs) exhibiting a soft-solid behavior and angle-independent structural color. For the first time, we report a discrete change in the angle-independent structural color of SGCAs with temperature because of a temperature-induced colloidal glass-to-gel transition. The interparticle interaction changed from repulsive to attractive at the LCST temperature, and it was characterized by a V-shaped rheological response and a direct electron microscope observation of the colloidal suspension in the IL. With unique rheological and optical properties as well as properties derived from the IL itself, the thermosensitive SGCAs may be of interest as a new material for a wide range of applications such as electrochemical devices and color displays.  相似文献   

17.
We demonstrate an approach using temperature-dependent hydrogel depletants to thermoreversibly tune colloidal attraction and interfacial colloidal crystallization. Total internal reflection and video microscopy are used to measure temperature-dependent depletion potentials between approximately 2 microm silica colloids and surfaces as mediated by approximately 0.2 microm poly-N-isopropylacrylamide (PNIPAM) hydrogel particles. Measured depletion potentials are modeled using the Asakura-Oosawa theory while treating PNIPAM depletants as swellable hard spheres. Monte Carlo simulations using the measured potentials predict reversible, quasi-2D crystallization and melting at approximately 27 degrees C in quantitative agreement with video microscopy images of measured microstructures (i.e., radial distribution functions) over the temperature range of interest (20-29 degrees C). Additional measurements of short-time self-diffusivities display excellent agreement with predicted diffusivities by considering multibody hydrodynamic interactions and using a swellable hard sphere model for the PNIPAM solution viscosity. Our findings demonstrate the ability to quantitatively measure, model, and manipulate kT-scale depletion attraction and phase behavior as a means of formally engineering interfacial colloidal crystallization.  相似文献   

18.
We consider a model dense colloidal dispersion at the glass transition, and investigate the connection between equilibrium stress fluctuations, seen in linear shear moduli, and the shear stresses under strong flow conditions far from equilibrium, viz., flow curves for finite shear rates. To this purpose, thermosensitive core-shell particles consisting of a polystyrene core and a cross-linked poly(N-isopropylacrylamide) shell were synthesized. Data over an extended range in shear rates and frequencies are compared to theoretical results from integrations through transients and mode coupling approaches. The connection between nonlinear rheology and glass transition is clarified. While the theoretical models semiquantitatively fit the data taken in fluid states and the predominant elastic response of glass, a yet unaccounted dissipative mechanism is identified in glassy states.  相似文献   

19.
Crystallization behavior of soft, attractive microgels   总被引:2,自引:0,他引:2  
The equilibrium phase behavior and the dynamics of colloidal assemblies composed of soft, spherical, colloidal particles with attractive pair potentials have been studied by digital video microscopy. The particles were synthesized by precipitation copolymerization of N-isopropylacrylamide (NIPAm), acrylic acid (AAc), and N,N'-methylene bis(acrylamide) (BIS), yielding highly water swollen hydrogel microparticles (microgels) with temperature- and pH-tunable swelling properties. It is observed that in a pH = 3.0 buffer with an ionic strength of 10 mM, assemblies of pNIPAm-AAc microgels crystallize due to a delicate balance between weak attractive and soft repulsive forces. The attractive interactions are further confirmed by measurements of the crystal melting temperatures. As the temperature of colloidal crystals is increased, the crystalline phase does not melt until the temperature is far above the lower critical solution temperature (LCST) of the microgels, in stark contrast to what is typically observed for phases formed due to purely repulsive interactions. The unusual thermal stability of pNIPAm-AAc colloidal crystals demonstrates an enthalpic origin of crystallization for these microgels.  相似文献   

20.
We have investigated the rheological properties and the orientational distributions of particles of a dilute colloidal dispersion, which is composed of ferromagnetic spherocylinder particles, subject to a simple shear flow. The governing equation of an orientational distribution function has been derived from the balance of the torques acting on a particle in an applied magnetic field. After a spherical harmonic expansion, an approximate solution to the governing equation has been found by Galerkin's method. The results obtained are summarized as follows. The orientational distribution function has a sharper peak for a stronger magnetic field, and the position of the peak changes from the flow direction to the magnetic field direction as the magnetic field comes to govern the shear flow. Since the orientation of the particle is highly restricted in the field direction as the magnetic field becomes strong, the viscosity increases significantly. The particles with a larger aspect ratio lead to the larger increment in the viscosity, since they induce a larger resistance in a flow field. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号