首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational analysis of bis(2-phenylalkyl)phosphine selenides was performed by the dipole moment method and quantum-chemical calculations. Bis(2-phenylpropyl)phosphine selenide was found to exist as a mixture of several conformers, the most energetically favorable of which being characterized by gauche (non-eclipsed) orientation of the P=Se and $C_{sp^3 } - C_{sp^3 } $ bonds.  相似文献   

2.
The catalytic addition of methyl iodide to acetylene yielding E-1-iodopropene has been discovered. The reaction competes with the formation of E,E-1,4-diiodobuta-1,3-diene. The key intermediate in these reactions is the methylvinyl derivative of PtIV resulting from acetylene iodoplatination by the PtIV methyl complex forming in the equilibrium process. The \(C_{sp^2 } - C_{sp^3 }\) coupling product in the reductive elimination of the ligands is E-1-iodopropene. E,E-1,4-diiodobuta-1,3-diene is the product of the iodoplatination of the second acetylene molecule by this intermediate followed by the \(C_{sp^2 } - C_{sp^2 }\) coupling of the vinyl ligands.  相似文献   

3.
Densities, ??, and viscosities, ??, of binary mixtures of 2-methyl-2-propanol with acetone (AC), ethyl methyl ketone (EMK) and acetophenone (AP), including those of the pure liquids, were measured over the entire composition range at 298.15, 303.15 and 308.15?K. From these experimental data, the excess molar volume $V_{\mathrm{m}}^{\mathrm{E}}$ , deviation in viscosity ????, partial and apparent molar volumes ( $\overline{V}_{\mathrm{m},1}^{\,\circ }$ , $\overline{V}_{\mathrm{m},2}^{\,\circ }$ , $\overline{V}_{\phi ,1}^{\,\circ}$ and $\overline{V}_{\phi,2}^{\,\circ} $ ), and their excess values ( $\overline{V}_{\mathrm{m},1}^{\,\circ \mathrm{E}}$ , $\overline{V}_{\mathrm{m,2}}^{\,\circ \mathrm{ E}}$ , $\overline {V}_{\phi \mathrm{,1}}^{\,\circ \mathrm{ E}}$ and $\overline{V}_{\phi \mathrm{,2}}^{\,\circ \mathrm{ E}}$ ) of the components at infinite dilution were calculated. The interaction between the component molecules follows the order of AP > AC > EMK.  相似文献   

4.
The result of the quadrupole \(Q_{ns_{1/2} } \) calculation of the excitedns 1/2-state of the hydrogen atom is presented. It is shown that \(Q_{ns_{1/2} } \) turns out to be a factor (n 2+2)/3 larger than the ground-state quadrupole moment \(Q_{1s_{1/2} } \) .  相似文献   

5.
Fourier transform infrared spectroscopy of \(\hbox {CH}_{4}/\hbox {N}_{2}\) and \(\hbox {C}_{2}\hbox {H}_{m}/\hbox {N}_2\) ( \(m = 2, 4, 6\) ) gas mixtures in a medium pressure (300 mbar) dielectric barrier discharge was performed. Consumption of the initial gas and formation of other hydrocarbon and of nitrogen-containing HCN and \(\hbox {NH}_{3}\) molecules was observed. \(\hbox {NH}_{3}\) formation was further confirmed by laser absorption measurements. The experimental result for \(\hbox {NH}_{3}\) is at variance with simulation results.  相似文献   

6.
The hyperfine levels of the sodium 3P 1/2,3/2 states were resolved using a narrow linewidth laser to excite the ground state. The laser frequency was scanned while fluorescence resulting from the radiative decay of the excited state was detected. The frequency was calibrated using the known hyperfine splitting of the ground state. The magnetic dipoleA and electric quadrupoleB hyperfine coupling constants of the excited states were determined to be $A_{3P_{1/2} } = 94.44 \pm 0.13$ , $A_{3P_{3/2} } = 18.62 \pm 0.21$ and $B_{3P_{1/2} } = 2.11 \pm 0.52MHz$ . The uncertainty of $A_{3P_{1/2} } $ is less than results previously reported while the data for the 3P 3/2 state are consistent with those existing in the literature.  相似文献   

7.
Complete active space self-consistent field and second-order multiconfigurational perturbation theory methods have been performed to investigate the quartet excited state ${\tilde{a}}^{4}{A^{\prime\prime}}$ potential energy surface of HCNN radical. Two located minima with respective cis and trans structures could easily dissociate to CH $({\tilde{a}}^{4}\Sigma^{-})$ and $N_{2} ({\tilde{X}}^{1}\Sigma_{\rm g}^{+})$ products with similar barrier of about 16.0 kcal/mol. In addition, four minimum energy crossing points on a surface of intersection between ${\tilde{a}}^{4}A^{\prime\prime}$ and X ( $X={\tilde{X}}^{2}A^{\prime\prime}$ and ${\tilde{A}}^{2}A^{\prime}$ ) states are located near to the minima. However, the intersystem crossing ${\tilde{a}}^{4}A^{\prime\prime} \rightarrow X$ is weak due to the vanishingly small spin–orbit interactions. It further indicates that the direct dissociation on the ${\tilde{a}}^{4}{A^{\prime\prime}}$ state is more favored. This information combined with the comparison with isoelectronic HCCO provides an indirect support to the recent experimental proposal of photodissociation mechanism of HCNN.  相似文献   

8.
Photoelectrochemical, photoelectrocatalytic, and electrochemical processes of silicon anodic oxidation and hydrogen evolution in aqueous HF solution are discussed in terms of thermodynamic stability of Si, oxides SiO, SiO2, and Si surface hydrides. It is shown that photoelectrochemical oxidation of n-type low-resistivity silicon to SiO2 is catalyzed by Si $^{+}$ photo-hole formation, whereas in the case of p-type Si, the feasibility of this reaction is predetermined by p-type conductivity. It is suggested that anodic oxidation of Si goes through the stage of SiO oxide formation and its subsequent oxidation to SiO2. Such mechanism accounts for chemical inertness of Si phase in HF solutions as well as for selective, anisotropic, and isotropic etching of Si within E ranges from $-0.5$ to 0.35 V, $0.35-0.8~V,$ and $E > 0.8$ V, respectively. Hydrogen evolution reaction on Si surface proceeds at very large overpotential ( $\geq 0.5$ V) through the stage of surface Si hydride formation: $\mathrm {Si + H_{2}O + e^{-} \rightarrow (SiH)_{surf} + OH^{-}}$ (the rate determining step) and $\mathrm {(SiH)_{surf} + H_{2}O + e^{-} \rightarrow Si + H_{2} + OH^{-}}$ . Illumination-related effects of surface reactions relevant to selective and anisotropic etching and nano/micro-structuring of Si surface are discussed.  相似文献   

9.
Partial molal volumes ( $V_{\phi} ^{0}$ ) and partial molal compressibilities ( $K_{\phi} ^{0}$ ) for glycine, L-alanine, L-valine and L-leucine in aqueous potassium fluoride solutions (0.1 to 0.5?mol?kg?1) have been measured at T=(303.15,308.15,313.15 and 318.15) K from precise density and ultrasonic speed measurements. Using these data, Hepler coefficients ( $\partial^{2}V_{\phi} ^{0}/\partial T^{2}$ ), transfer volumes ( $\Delta V_{\phi} ^{0}$ ), transfer compressibilities ( $\Delta K_{\phi} ^{0}$ ) and hydration number (n H) have been calculated. Pair and triplet interaction coefficients have been obtained from the transfer parameters. The values of $V_{\phi} ^{0}$ and $K_{\phi} ^{0}$ vary linearly with increasing number of carbon atoms in the alkyl chain of the amino acids. The contributions of charged end groups ( $\mathrm{NH}_{3}^{+}$ , COO?), CH2 group and other alkyl chains of the amino acids have also been estimated. The results are discussed in terms of the solute?Ccosolute interactions and the dehydration effect of potassium fluoride on the amino acids.  相似文献   

10.
After the RS-stereoisomeric group \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) of order 16 has been defined by starting point group \(\mathbf{D}_{2d}\) of order 8, the isomorphism between \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) and the point group \(\mathbf{D}_{4h}\) of order 16 is thoroughly discussed. The non-redundant set of subgroups (SSG) of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) is obtained by referring to the non-redundant set of subgroups of \(\mathbf{D}_{4h}\) . The coset representation for characterizing the orbit of the four positions of an allene skeleton is clarified to be \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{s\widetilde{\sigma }\widehat{I}})\) , which is closely related to the \(\mathbf{D}_{4h}(/\mathbf{C}_{2v}^{\prime \prime \prime })\) . According to the unit-subduced-cycle-index (USCI) approach (Fujita, Symmetry and combinatorial enumeration of chemistry. Springer, Berlin 1991), the subduction of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{s\widetilde{\sigma }\widehat{I}})\) is examined so as to generate unit subduced cycle indices with chirality fittingness (USCI-CFs). Then, the fixed-point matrix method of the USCI approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calculated in an itemized fashion with respect to the subgroups of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) . After the subgroups of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) are categorized into types I–V, type-itemized enumeration of quadruplets is conducted to illustrate the versatility of the stereoisogram approach.  相似文献   

11.
The densities, ρ 12, and speeds of sound, u 12, of 1-ethyl-3-methylimidazolium tetrafluoroborate (1) + N-methylformamide or N,N-dimethylformamide (2) binary mixtures at (293.15. 298.15. 303.15, 308.15 K), and excess molar enthalpies, $ H_{12}^{\text{E}} $ H 12 E , of the same mixtures at 298.15 K have been measured over the entire mole fraction range using a density and sound analyzer (Anton Paar DSA-5000) and a 2-drop microcalorimeter, respectively. Excess molar volume, $ V_{12}^{\text{E}} $ V 12 E , and excess isentropic compressibility, $ \left( {\kappa_{S}^{\text{E}} } \right)_{12} $ ( κ S E ) 12 , values have been calculated by utilizing the measured density and speed of sound data. The observed data have been analyzed in terms of: (i) Graph theory and (ii) the Prigogine–Flory–Patterson theory. Analysis of the $ V_{12}^{\text{E}} $ V 12 E data in terms of Graph theory suggest that: (i) in pure 1-ethyl-3-methylimidazolium tetrafluoroborate, the tetrafluoroborate anion is positioned over the imidazoliun ring and there are interactions between the hydrogen atom of (C–H{edge}) and proton of the –CH3 group (imidazolium ring) with fluorine atoms of tetrafluoroborate anion, and (ii) (1 + 2) mixtures are characterized by ion–dipole interactions to form a 1:1 molecular complex. Further, the $ V_{12}^{\text{E}} $ V 12 E , $ H_{12}^{\text{E}} $ H 12 E and $ \left( {\kappa_{S}^{\text{E}} } \right)_{12} $ ( κ S E ) 12 values determined from Graph theory compare well with their measured experimental data.  相似文献   

12.
The intermediate and LS-coupling schemes for the free lanthanide ions $\text{ Pr }^{3+}$ Pr 3 + and $\text{ Tm }^{3+}$ Tm 3 + have been compared by the matrix elements of the tensor operator ${{\varvec{U}}}^{({\varvec{k}})}, \text{ k } = 2, 4, 6$ U ( k ) , k = 2 , 4 , 6 . The necessary eigenvectors and eigenvalues have been computed with the aid of four parameters, $\text{ F }_{2}, \text{ F }_{4}, \text{ F }_{6}$ F 2 , F 4 , F 6 , and $\zeta _{4\mathrm{f}}$ ζ 4 f , known from free-ion spectra of the same ions. It has been found that both coupling types for each ion lead to close values of ${\vert }{{\varvec{U}}}^{({\varvec{k}})}{\vert }^{2}$ | U ( k ) | 2 only for transitions from the ground level to certain lower-lying energy levels within the $4\text{ f }^\mathrm{N}$ 4 f N configuration.  相似文献   

13.
A three-step method to determine the eutectic composition of a binary or ternary mixture is introduced. The method consists in creating a temperature–composition diagram, validating the predicted eutectic composition via differential scanning calorimetry and subsequent T-History measurements. To test the three-step method, we use two novel eutectic phase change materials based on \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm O}\) and \(\mathrm{NH}_4\mathrm{NO}_3\)   respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\hbox {O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) with equilibrium liquidus temperatures of 12.4 and 3.9  \(\,^{\circ }\mathrm {C}\) respectively with corresponding melting enthalpies of 135 J \(\mathrm{g}^{-1}\) (237 J \(\mathrm{cm}^{-3}\) ) respectively 133 J \(\mathrm{g}^{-1}\) (225 J \(\mathrm{cm}^{-3}\) ). We find eutectic compositions of 75/25 mass% for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) and 73/27 mass% for \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) . Considering a temperature range of 15 K around the phase change, a maximum storage capacity of about 172 J \(\mathrm{g}^{-1}\) (302 J \(\mathrm{cm}^{-3}\) ) respectively 162 J \(\mathrm{g}^{-1}\) (274 J \(\mathrm{cm}^{-3}\) ) was determined for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) .  相似文献   

14.
Sound speeds have been measured for aqueous solutions of the nucleoside thymidine at T = 298.15 K and at the pressures p = (10, 20, 40, 60, 80, and 100) MPa. The partial molar volumes at infinite dilution, $ V_{2}^{\text{o}} $ , the partial molar isentropic compressions at infinite dilution, $ K_{S,2}^{\text{o}} $ , and the partial molar isothermal compressions at infinite dilution, $ K_{T,2}^{\text{o}} $ $ \{ K_{T,2}^{\text{o}} = - (\partial V_{2}^{\text{o}} /\partial p)_{T} \} $ , have been derived from the sound speeds at elevated pressures using methods described in our previous work. The $ V_{2}^{\text{o}} $ and $ K_{T,2}^{\text{o}} $ results were rationalized in terms of the likely interactions between thymidine and the aqueous solvent. The $ V_{2}^{\text{o}} $ results were also compared with those calculated using the revised Helgeson–Kirkham–Flowers (HKF) equation of state.  相似文献   

15.
Extraction of microamounts of europium and americium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B?) in the presence of bis(diphenylphosphino)methane dioxide (DPPMDO, L) has been investigated. The equilibrium data have been explained assuming that the species $ {\text{HL}}^{ + } $ , $ {\text{HL}}_{2}^{ + } $ , $ {\text{ML}}_{2}^{3 + } $ , $ {\text{ML}}_{3}^{3 + } $ and $ {\text{ML}}_{4}^{3 + } $ (M3+ = Eu3+, Am3+) are extracted into the organic phase. The values of extraction and stability constants of the species in nitrobenzene saturated with water have been determined. It was found that the stability constants of the corresponding complexes $ {\text{EuL}}_{n}^{3 + } $ and $ {\text{AmL}}_{n}^{3 + } $ , where n = 2, 3 and L is DPPMDO, in water–saturated nitrobenzene are comparable, whereas in this medium the stability of the cationic species $ {\text{AmL}}_{4}^{3 + } $ (L = DPPMDO) is somewhat higher than that of $ {\text{EuL}}_{4}^{3 + } $ with the same ligand L.  相似文献   

16.
The finite set of rate equations C m,n ' n,n-1 C m,n-1 (t)+α n,n C m,n (t)+α n,n+1 C m,n+1 (t), $$0 \leqslant m \leqslant N,0 \leqslant n \leqslant N,$$ where $$\alpha _{i,j}$$ are $\alpha _{j,j - 1} = A,\alpha _{j,j} = - \left( {A + B} \right),\alpha _{j,j + 1} = B$ , with $\alpha _{0,0} = - \alpha _{1,0} = - \alpha$ and $\alpha _{N,N} = - \alpha _{N - 1,N} = - b,\alpha _{0, - 1} = \alpha _{N,N + 1} = 0$ , subject to the initial condition $C_{m,n} \left( 0 \right) = \delta _{n,m}$ (Kronecker delta) for some $m$ , arises in a number of applications of mathematics and mathematical physics. We show that there are five sets of values of $a$ and $b$ for which the above system admits exact transient solutions.  相似文献   

17.
Measurement of the transport of water with respect to the second solvent component in a binary aqueous mixture gives the Washburn number, $ w_{\text{W}} = (n_{\text{W}} )_{ + } t_{ + } - (n_{\text{W}} )_{ - } t_{ - } $ , in a transport number determination, where the ions move in opposite directions, and give the Erdey–Grúz number, $ \Upsigma n_{\text{W}} = (n_{\text{W}} )_{ + } + (n_{\text{W}} )_{ - } $ , in a diffusion experiment, where the ions move in the same direction. Here n W and t are the number of water molecules and transport number, respectively, of the anion or cation. Combination of the results of these two experiments allows unambiguous determination of values for the solvent transport numbers, $ n_{\text{W}} $ , of the individual ions. While the values of $ n_{\text{W}} $ depend on the cosolvent, at high dilutions of the second component the highest value of $ n_{\text{W}} $ found, $ N_{\text{W}} $ , should approach the number of water molecules transported by the ion in pure water, $ N_{\text{W}}^{0} $ . New data for alkali-metal, alkaline-earth metal, hydrogen and halide ions in dilute mixtures of t-butyl alcohol with water are presented. Values of $ N_{\text{W}} $ rounded to whole numbers thus found are: 12 (Li+), 10 (Na+), 6 (K+), 5 (Rb+), 5 (Cs+), 1 (H+), 13 (Ca2+), 16 (Sr2+) and 15 (Ba2+). Factors influencing preferential solvation are briefly discussed. Detailed recalculations of $ n_{\text{W}} $ in the raffinose–water system from literature data also allows resolution of a problem with the Onsager Relations.  相似文献   

18.
Using a majorization technique that identifies the maximal and minimal vectors of a variety of subsets of ${\mathbb{R}^{n}}$ , we find upper and lower bounds for the Kirchhoff index K(G) of an arbitrary simple connected graph G that improve those existing in the literature. Specifically we show that $$K(G) \geq \frac{n}{d_{1}} \left[ \frac{1}{1+\frac{\sigma}{\sqrt{n-1}}} + \frac{(n-2)^{2}}{n-1-\frac{\sigma}{\sqrt{n-1}}}\right] ,$$ where d 1 is the largest degree among all vertices in G, $$\sigma ^{2} = \frac{2}{n} \sum_{(i, j) \in E} \frac{1}{d_{i}d_{j}} = \left( \frac{2}{n}\right) R_{-1}(G),$$ and R ?1(G) is the general Randi? index of G for ${\alpha =-1}$ . Also we show that $$K(G) \leq \frac{n}{d_{n}}\left( \frac{n-k-2}{1-\lambda _{2}}+\frac{k}{2}+\frac{1}{\theta}\right) ,$$ where d n is the smallest degree, ${\lambda _{2}}$ is the second eigenvalue of the transition probability of the random walk on G, $$k = \left \lfloor \frac{\lambda _{2} \left( n-1\right) +1}{\lambda _{2}+1}\right\rfloor {\rm and}\quad\theta = \lambda _{2} \left( n-k-2\right) -k+2.$$   相似文献   

19.
The crystal structure of n-undecylammonium bromide monohydrate was determined by X-ray crystallography. The crystal system of the compound is monoclinic, and the space group is P21/c. Molar enthalpies of dissolution of the compound at different concentrations m/(mol·kg?1) were measured with an isoperibol solution–reaction calorimeter at T = 298.15 K. According to the Pitzer’s electrolyte solution model, the molar enthalpy of dissolution of the compound at infinite dilution ( $ \Updelta_{\text{sol}} H_{\text{m}}^{\infty } $ ) and Pitzer parameters ( $ \beta_{\text{MX}}^{(0)L} $ and $ \beta_{\text{MX}}^{(1)L} $ ) were obtained. Values of the apparent relative molar enthalpies ( $ {}^{\Upphi }L $ ) of the title compound and relative partial molar enthalpies ( $ \bar{L}_{2} $ and $ \bar{L}_{1} $ ) of the solute and the solvent at different concentrations were derived from experimental values of the enthalpies of dissolution.  相似文献   

20.
The heat capacity and density of solutions of calcium and cadmium nitrates in N-methylpyrrolidone (MP) at 298.15 K are studied by calorimetry and densimetry. The obtained data are discussed in relation to certain features of solvation and complex formation in solutions of these salts. The standard partial molar heat capacities and volumes ( $\overline {C_{p^2 }^0 }$ and $\overline {V_2^0 }$ ) of the electrolytes in MP are calculated. The standard heat capacities $\overline {C_{p^i }^0 }$ and volumes $\overline {V_i^0 }$ of Ca2+ and Cd2+ ions in MP at 298.15 K were determined, along with the contribution from specific interactions to the values of $\overline {C_{p^i }^0 }$ and $\overline {V_i^0 }$ of Cd2+ ions in MP solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号