首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Giant magnetoresistance (GMR) has been observed in Co5Cu95 alloys fabricated by melt-spinning. The highest MR change of 28.0% occurs for Co5Cu95 after annealing at 450°C for 30 min. Based on the super-paramagnetic assumption, the average size of Co particles embedded in Cu matrix, ranging from 3.0 to 6.0 nm, has been determined by simulating the magnetization curves at 295 K which is higher than the blocking temperatures for the samples. Comparison with phenomenological theory for GMR indicates that the interfacial spin-dependent scattering is the dominant scattering mechanism underlying GMR origin in granular systems. Additionally, for the samples in as-quenched state or annealed at temperatureT A=350°C, the electron hybridization and super-paramagnetic behaviors of fine Co particles may be responsible for the low value of MR change.  相似文献   

2.
How to measure energy dissipation in dynamic mode atomic force microscopy   总被引:2,自引:0,他引:2  
When studying a mechanical system like an atomic force microscope (AFM) in dynamic mode it is intuitive and instructive to analyse the forces involved in tip–sample interaction. A different but complementary approach is based on analysing the energy that is dissipated when the tip periodically interacts with the sample surface. This method does not require solving the differential equation of motion for the oscillating cantilever, but is based entirely on the analysis of the energy flow in and out of the dynamic system. Therefore the problem of finding a realistic model to describe the tip–sample interaction in terms of non-linear force–distance dependencies and damping effects is omitted. Instead, it is possible to determine the energy dissipated by the tip–sample interaction directly by measuring such quantities as oscillation amplitude, frequency, phase shift and drive amplitude. The method proved to be important when interpreting phase data obtained in tapping mode, but is also applicable to a variety of scanning probe microscopes operating in different dynamic modes. Additional electronics were designed to allow a direct mapping of local energy dissipation while scanning a sample surface. By applying this technique to the cross-section of a polymer blend a material specific contrast was observed.  相似文献   

3.
Research results for the nonlinear acoustic properties of the B95 polycrystalline aluminum alloy and the B95/nanodiamond composite have been described. The nonlinear properties of the alloys have been studied by the spectral method that measures the efficiency of generation of the second harmonic of a bulk acoustic wave at a frequency of 2f = 10 MHz in the field of a finite-amplitude longitudinal acoustic wave at a frequency of f = 5 MHz. The results derived by this method have been compared with the results of studies of the nonlinear acoustic properties of the test alloys using the Thurston–Brugger quasi-static method.  相似文献   

4.
In this paper, we present a model describing the nonlinear dynamic visco-hyperelastic behaviors of dielectric elastomers (DE), with the purpose to explain the material’s dynamic energy dissipation mechanism, and provide convenience for actual design of DE devices. On the basic mechanical properties of the material, a visco-hyperelastic constitutive relationship, derived from Kelvin–Voigt rheological model and expressed as complex modulus, is created at first. Then, from the approximate relationship between harmonic motion frequency and the stretch rate (as well as the amplitude of stretch ratio) of the film, a new model-fitting approach is put forward to obtain the three intrinsic parameters, based on the uniaxial tensile tests for VHB 4910 DE film at different stretch rates (from 0.029 to 0.71 s?1). Applying the proposed parameters, the hysteresis and energy dissipation behaviors of the DE film are subsequently predicted, showing good agreement with the experimental results. Finally, the influences of the kinematic variable pair on energy dissipation properties are quantitatively investigated.  相似文献   

5.
Isothermal annealing of creep resistant Mg-6 wt. % Y-3 wt. % Nd and Mg-6 wt. % Y-3 wt. % Nd-0·4 wt. % Zr in the temperature range 150–350 °C was investigated by hardness testing. The observed hardness changes are ascribed to a rearrangement of solutes (most probably of yttrium atoms). An attempt was made to study this rearrangement of solute atoms by electrical resistance and differential scanning calorimetry measurements.  相似文献   

6.
ABSTRACT

Ultrafine-grained (UFG) structure is beneficial for overcoming the strength-ductility trade-off and enhancing the superplasticity of two-phase Ti alloys. Recently, it has been demonstrated that compression with decreasing temperatures is effective for producing UFG two-phase Ti alloys initially with lamellar microstructures. However, the effect of lamellar thickness on the microstructural evolution during this process has not yet been fully elucidated. In this study, Ti-6Al-4V alloys with different lamellar thicknesses were compressed while the processing temperature was decreased from 800°C to 600°C. The thinner lamellar microstructure was preferable for preventing void/crack formation, while accelerating the continuous dynamic recrystallisation, thus providing a fully UFG structure at a relatively low strain of 1.4. In addition, the origin of different plastic flows in each sample was analysed in detail by analysing the microstructural evolution. These findings demonstrate that the processing method is effective for reducing the grain size of a two-phase Ti alloy without severe plastic deformation techniques, which require large strain (≥4). A reduction in the strain required to achieve the UFG structure would be beneficial because conventional metal-forming processes, i.e. rolling, extrusion, or forging, which are suitable for mass production, could be used.  相似文献   

7.
The segregation energies of B, Si, P, Cr, Ni, Zr, and Mg on the special grain boundary (GB) Σ5 (210)[100] and on the open (210) surface of aluminum have been determined and the GB splitting energy has been calculated by the density functional theory methods. It has been shown that all elements listed above enrich the GB; for B, Si, P, Cr, Ni and Zr, Mg, interstitial and substitutional sites are preferred, respectively. The effect of alloying elements on the GB binding has been estimated using the parameter η equal to the change in the fracture work of the aluminum GB when adding alloying element atoms. From the viewpoint of strengthening the GB binding forces, Zr, Cr, Ni, and Mg are efficient, Si and B are neutral and phosphorus weakens GBs.  相似文献   

8.
The annealing-induced evolution of the structure and microhardness of submicro-and nanocrystalline Al—3% Mg and Al 1570 alloys produced by torsional severe plastic deformation are studied. Annealing of the Al-3% Mg alloy at 373–423 K and annealing of the Al 1570 alloy at 373–473 K are shown to result in the relaxation of internal stresses and subsequent normal grain growth. As the annealing temperature increases, the microhardness decreases. At higher temperatures (473 K for the Al—3% Mg alloy and 573 K for the Al 1570 alloy), anomalous grain growth takes place. This growth is accompanied by the appearance of numerous grains with a high dislocation density, a high concentration of impurity atoms in grain boundaries, and an increase in the microhardness. These effects are explained.  相似文献   

9.
Evolution of the Havrda-Charvat-Daroczy entropy and energy dissipation during irreversible processes in open nonextensive systems is considered. The kinetic equation and statistical criterion of nonextensive system evolution are presented. Nonequilibrium statistical and variational methods of derivation of the kinetic equation with a source being a fluctuation of a physical quantity are described. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 35–41, February, 2006.  相似文献   

10.
The tuning of a dynamic vibration absorber is considered such that either the kinetic energy of the host structure is minimised or the power dissipation within the absorber is maximised. If the host structure is approximated as a damped single degree of freedom, the optimal values for the ratio of the absorber's natural frequency to the host structure and the optimal damping ratio of the absorber are shown to be the same whether the kinetic energy of the host structure is minimised or the power dissipation of the absorber is maximised. It is also demonstrated that the total power input into the system does not depend on the two parameters but only on the host structure's mass.  相似文献   

11.
We have studied Al(Cu), Al(Mg) and Al(Ag) alloys to determine the μ+ trapping sites, and how impurity distortions affect these sites. Cu (Monovalent) contracts the Al lattice, Mg (divalent) expands it, and Ag (monovalent) has almost no effect. Fitting to a two-state model we obtained a temperature exponent β of 0.93 (26 for zero field and 1.16(14) for a longitudinal, field where β=1 implies a one-phonon induced diffusion process. The measured secon moment in Al(Mg) indicates a changing trapping site, which was confirmed by zero and longitudinal field studies. Comparing the Al(Mg) results with earlier Al(Cu) data, two types of sites can be identified: those which are distant from the defect and depend on the magnitude but not the sign of the deformation, and those close to Mg. Ag produces no lattice distortion, and its weaker depolarization suggests a different trapping mechanism.  相似文献   

12.
13.
ABSTRACT

The microstructure evolution and property change of four kinds of low silicon cast aluminum alloy exposed to heat for 0–50?h at 200°C were studied by means of Brinell hardness test, tensile property test, friction and wear property test and XRD analysis. The results show that with increasing thermal exposure time, the tensile strength of each group of samples decreased and the amount of wear increased. The tensile strength of samples with more Si content decreased slowly. When the time increased to 50?h, the increase of wear loss was the largest. The hardness of samples after thermal exposure increases compared with that before thermal exposure. The residual stress of (311) diffraction crystal surface of AlSi3.5Mg0.66 under different thermal exposure time was measured. The type of residual stress changed from residual tensile stress to residual compressive stress after thermal exposure. There is an abnormal phenomenon that the hardness of the sample increased and the amount of wear increased, and it is evident that the distribution of residual stress was inhomogeneous after thermal exposure. It is found that with increasing thermal exposure time to 50?h, the average lattice distortion ε of the low-index crystal plane and the high-index crystal plane in the aluminum alloys gradually increased.  相似文献   

14.
Combining total energy and molecular dynamics calculations, we explore the suitability of nanotube-based hooks for bonding. Our results indicate that a large force of 3.0 nN is required to disengage two hooks, which are formed by the insertion of pentagon-heptagon pairs in a (7,0) carbon nanotube. Nanohooks based on various nanotubes are resilient and keep their structural integrity during the opening process. Arrays of hooks, which are permanently anchored in solid surfaces, are a nanoscale counterpart of velcro fasteners, forming tough bonds with a capability of self-repair.  相似文献   

15.
Shearing of a simple nonpolar film, right after the liquid-to-solid phase transition under nanometer confinement, is studied by using a liquid-vapor molecular dynamics simulation method. We find that, in contrast with the shear melting and recrystallization behavior of the solidlike phase during the stick-slip motion, interlayer slips within the film and wall slips at the wall-film interface are often observed. The ordered solidified film is well maintained during the slip. Through the time variations of the frictional force and potential energy change within the film, we find that both the friction dissipation during the slip and the potential energy decay after the slip in the solidified film take a fairly large portion of the total energy dissipation.  相似文献   

16.
We study the statistical properties of complex networks constructed from time series of energy dissipation rates in three-dimensional fully developed turbulence using the visibility algorithm. The degree distribution is found to have a power-law tail with the tail exponent α=3.0. The exponential relation between the number of the boxes NB and the box size lB based on the edge-covering box-counting method illustrates that the network is not self-similar, which is also confirmed by the hub-hub attraction according to the visibility algorithm. In addition, it is found that the skeleton of the visibility network exhibits excellent allometric scaling with the scaling exponent η=1.163±0.005.  相似文献   

17.
Low temperature specific heats of V1?xFex (0?x?0.34) and V1?xFexHn (x = 0.02; 0.05; 0.1; 0.15 a 0 ? n ? 0.98) were investigated between 1.5 and 16 K.In V/Fe alloys temperature independent band paramagnetism was observed at iron concentrations below 20at%; at higher iron contents local magnetic moments occur and contribute magnetic terms to the low temperature specific heat. According to Schröder [14] these contributions can be explained by thermal agitation of superparamagnetic clusters of the Fe atoms with local moments. In the temperature range of the specific heat measurements the magnetic terms are dependent on temperature (contrary to Schröder) and can be described by Planck-Einstein functions. A separation of the magnetic contributions from the lattice and electronic term of heat capacity could be obtained in a satisfying way by least squares fitting with three Planck-Einstein functions.In “nonmagnetic” V/Fe alloys with less than 20at% Fe absorption of hydrogen generates local magnetic moments and superparamagnetic contributions. These are, therefore, connected primarily more with the band electron concentration ne, than with the iron content XFe At the highest ne, values, ne >0, large negative deviations from the regular course of the heat capacity plot are observed; these can be related to mictomagnetic behavior (freezing temperature of spin-glass state above the range of measurements, TF > 16 K).After correction for the superparamagnetic contributions there remains in the Fe containing alloys an appreciable enhancement of the electronic heat coefficient γ, up to a factor of about 2 when compared with the iron-free V/H samples. This effect is interpreted as resulting from mass enhancements of the itinerant electrons by electron-magnon (and-paramagnon) interactions.  相似文献   

18.
Reversible computation is briefly reviewed, utilizing a refined version of the Bennett-Fredkin-Turing machine, invoked in an earlier paper. A dissipationless classical version of this machine, which has no internal frietion, and where the computational velocity is determined by the initial kinetic energy, is also described. Such a machine requires perfect parts and also requires the unrealisstic assumption that the many extraneous degrees of freedom, which contribute to the physical structure, do not couple to the information-bearing degrees of freedom, and thus cause no friction Quantum mechanical computation is discussed at two levels. First of all we deplore the assertion. repcatedly found in the literature, that the uncertainty principle. Eth, with t equated to a switching time, yields any information about energydissipation. Similarly we point out that computation is not an iterated transmission and receiving process, and that considerations, which avoid the uncertainty principle, and instead use quantum mechanical channel capacity considerations, are equally unfounded. At a more constructive level we ask whether there is a quantum mechanical version of the dissipationless computer. Benioff has proposed one possible answer Quantum mechanical versions of dissipationless computers may suffer from the problems found in electron transport in disordered one-dimensional periodic potentials. The buildup of internal reflections may give a transmission coefficient. through the whole computation, which decreases exponentially with the length of the computation.  相似文献   

19.
In laser processes, the absorption factor of laser Nd:YAG by metals plays a very important role. In order to model laser welding, we need to know its evolution during the process. The theoretical calculation does not enable the prediction of the absorption factor in the case of a keyhole mode. It is difficult to predict the effect of plasma and recoil pressure on the shape of the keyhole. In this paper, an integrating sphere is used to determine the absorption factor during the laser process, which is carried out on two types of magnesium alloys (WE43 and RZ5) and an aluminum alloy. We obtain the evolution in time of the absorption factor according to different steps of the evolution of the keyhole.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号