首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Auger-electron spectroscopy, electron-energy loss spectroscopy, low-energy electron diffraction, and atomic-force microscopy are employed to investigate the growth mechanism, composition, structural and phase states, and morphology of Cu films (0.1–1 nm thick) deposited on a Si(001)-2 × 1 surface at a lower temperature of Cu evaporation (900°C) and room temperature of a substrate. The Cu film phase is shown to start growing on the Si(001)−2 × 1 surface after three Cu monolayers (MLs) are condensed. It has been revealed that atoms of Cu and Si(001) are mixed, a Cu2Si film phase is formed, and, thereafter, Cu3Si islands arise at a larger coating thickness. Annealing of the first Cu ML leads to reconstruction of the Si(001)-1 × 1-Cu surface layer, thereby modifying the film growth mechanism. As a consequence, the Cu2Si film phase arises when the thickness reaches two to four MLs, and bulk Cu3Si silicide islands begin growing at five to ten MLs. When islands continue to grow, their height and density reach, respectively, 1.5 nm and 2 × 1011 cm−2 and the island area is 70% of the substrate surface at a thickness of ten MLs.  相似文献   

2.
The initial stages of the formation of iron silicides in the Fe/Si(111)7 × 7 system in the course of solid-phase epitaxy are investigated using high-resolution photoelectron spectroscopy (~100 meV) with synchrotron radiation. The spectra of the Si 2p core and valence-band electrons obtained after deposition of iron coverages of up to 28 monolayers on the surface of the sample and subsequent isochronous annealings at 650°C are measured and analyzed. It is shown that the first to form under Fe deposition is an ultrathin film of the metastable silicide FeSi with a CsCl-type structure, on which a layer of the Fe-Si solid solution with segregated silicon grows. At coverages in excess of 10 monolayers, an iron film grows on the surface of the sample. Annealing of a silicon crystal coated with a Fe layer leads to the sequential formation of two stable silicide phases, namely, the ?-FeSi and β-FeSi2 phases, in the near-surface region of the sample. It is found that the process of solid-phase synthesis of the ?-FeSi phase passes through the stage of transformation of the iron film into the Fe-Si solid solution.  相似文献   

3.
The processes that occur in ultrathin (up to 1 nm) Fe and Co layers during deposition onto the Si(100)2 × 1 surface in various sequences and during annealing of the formed structures to a temperature of 400°C are studied. The elemental and chemical compositions of the films are analyzed by in situ high-resolution X-ray photoelectron spectroscopy using synchrotron radiation, and their magnetic properties are determined using the magnetic linear dichroism effect in the angular distribution of Fe 3p and Co 3p electrons. It is shown that, when iron is first deposited, the formed structure consists of the layers of FeSi, Fe3Si, Co-Si solid solution, and metallic cobalt with segregated silicon. The structure formed in the alternative case consists of the layers of CoSi, Co-Si solid solution, Co, Fe-Si solid solution, and Fe partly covered by silicon. All layers (apart from FeSi, CoSi) form general magnetic systems characterized by ferromagnetic ordering. Annealing of the structures at temperatures above 130dgC (for the Co/Fe/Si system) and ~200°C (for Fe/Co/Si) leads to the formation of nonmagnetic binary and ternary silicides (Fe x Co1 ? x Si, Fe x Co2 ? x Si).  相似文献   

4.
Thermal annealing-induced recrystallisation in Fe ion-implanted Si was investigated by transmission electron microscopy. Single crystals of Si(111) were implanted with 120 keV Fe ions to a fluence of 1.0×1017 cm-2 at cryogenic temperature. A buried amorphous Fe-Si layer in an amorphous Si matrix was formed in the as-implanted sample. Nanobeam electron diffraction revealed that metastable α-FeSi2 precipitates embedded in the amorphous Si matrix were formed after annealing at 350 °C for 8 h. The formation of this α-FeSi2-derived phase was unusual, because it has been observed only in epitaxially grown thin films. Based on the Fe1-xSi (0<x<0.5) phase with the CsCl structure, which is another metastable phase in the Fe-Si binary system, we discuss the formation process of the metastable α-FeSi2 in the amorphous matrix. PACS 61.43.Dq; 61.14.Lj; 61.80.Jh  相似文献   

5.
The structural, magnetic and transport properties of sputtered Fe/Si multilayers were studied. The analyses of the data of the X-ray diffraction, resistance and magnetic measurements show that heavy atomic interdiffusion between Fe and Si occurs, resulting in multilayers of different complicated structures according to different sublayer thicknesses. The nominal Fe layers in the multilayers generally consist of Fe layers doped with Si, ferromagnetic Fe-Si silicide layers and nonmagnetic Fe-Si silicide interface layers, while the nominal Si spacers turn out to be Fe-Si compound layers with additional amorphous Si sublayers only under the condition either for the series or for the series multilayers. A strong antiferromagnetic (AFM) coupling and negative magnetoresistance (MR) effect, about 1%, were observed only in multilayers with iron silicide spacers and disappeared when -Si layers appear in the spacers. The dependences of MR on and on bilayer numbers N resemble the dependence of AFM coupling. The increase of MR ratio with increasing N is mainly attributed to the improvement of AFM coupling for multilayers with N. The dependence of MR ratio is similar to that in metal/metal system with predominant bulk spin dependent scattering and is fitted by a phenomenological formula for GMR. At 77 K both the MR effect and saturation field increase. All these facts suggest that the mechanisms of the AFM coupling and MR effect in sputtered Fe/Si multilayers are similar to those in metal/metal system. Received: 11 February 1998 / Revised: 9 March 1998 / Accepted: 9 March 1998  相似文献   

6.
The room-temperature interaction of iron atoms with the oxidized Si(100)2×1 surface at a coverage from a submonolayer to four monolayers is studied by core-level photoelectron spectroscopy using synchrotron radiation. Computer simulation of the Si 2p core electron spectra demonstrates that iron atoms penetrate beneath the silicon oxide even at room temperature. This process causes the initial silicon phases at the SiOx/Si interface to disappear; gives rise to a complex ternary phase involving Fe, O, and Si atoms; and favors the formation of a Fe-Si solid solution at the interface.  相似文献   

7.
Specific features of the phase formation in the Fe-Si system within the Fe x Si1 − x (x = 0.5–0.6) concentration range have been investigated. The data obtained by conversion electron M?ssbauer spectroscopy suggest that, for the Fe-Si system in the concentration range x > 0.55, a polycrystalline FeSi phase with the CsCl structure is formed under thermodynamically equilibrium conditions upon annealing at T = 250°C; in this case, the excess (overstoichiometric) Fe atoms are incorporated into the Si sublattice. Previously, the CsCl-FeSi phase was observed only in epitaxially stabilized FeSi/Si(100) layers. Original Russian Text ? A.V. Zenkevich, D.E. Lauer, V.P. Filippov, 2007, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2007, Vol. 71, No. 9, pp. 1313–1315.  相似文献   

8.
The effect of annealing in an external magnetic field applied perpendicular to the plane of the film on the kinetics of Ll 0 phase transformation of the microstructure and the magnetic properties of the Fe(2 nm)/FePt(20 nm)/Pt(2 nm) multilayer system has been investigated. The relations between the hysteresis loop shape, magnetic correlation length, and structural disorders, which are characteristic of magnetic information carriers, have been analyzed. It has been found that the annealing of the Fe(2 nm)/FePt(20 nm)/Pt(2 nm) multilayer system at a temperature of 470°C in an external magnetic field of 3500 Oe, which is applied perpendicular to the film plane, leads to the formation of a face-centered tetragonal structure of the Ll 0 phase in the FePt film, which is characterized by the high coercivity H c , the (001) preferred texture, the magnetic anisotropy perpendicular to the film plane, small sizes of FePt grains in the film, and weak exchange coupling between the particles. The energy of the external magnetic field encourages the process of transformation of the FePt film into the Ll 0 phase. Thus, a method has been developed for fabricating multilayer films based on the FePt Ll 0 phase with the parameters necessary for information carrier materials with perpendicular-type magnetic recording.  相似文献   

9.
The results of the structural and magnetic studies of the epitaxial structure prepared during the simultaneous evaporation from two iron and silicon sources on an atomically pure Si(111)7 × 7 surface at a substrate temperature of 150°C have been presented. The epitaxial structure has been identified as a single-crystal Fe3Si silicide film with the orientation Si[111]‖Fe3Si[111] using methods of the X-ray structural analysis, transmission electron microscopy, and reflection high-energy electron diffraction. It has been established that the epitaxial Fe3Si film at room temperature has magnetic uniaxial anisotropy (H a = 26 Oe) and a relatively narrow uniform ferromagnetic resonance line (ΔH = 11.57 Oe) measured at a pump frequency of 2.274 GHz.  相似文献   

10.
Si+ ions of 50 keV in energy were implanted into α-Fe (95% 57Fe) with a nominal dose of 5 × 1017 cm?2 at 350°C. The depth distribution of the Fe-Si phases formed by ion implantation after annealing at 300 and 400°C for 1 h was studied quantitatively by depth-selective conversion-electron Mössbauer spectroscopy (DCEMS). Ordered Fe3Si and ε-FeSi was observed.  相似文献   

11.
The surface composition of Ni50Fe50(100) alloy was studied and the segregation and adsorption of sulphur were investigated by AES, LEED and radiotracer (35S) techniques. Ion etching produces a surface composition identical to the matrix composition (Ni:Fe=1:1). In the temperature range 300–600°C iron segregates on the surface and nitrogen was detected. Heating to higher temperatures (>600°C) also causes the segregation of iron as well as the segregation of sulphur. The durface reaches a stable composition that does not depend on further changes of the temperature in the range 25–800°C. It consists of an almost complete monolayer of iron segregated on the alloy. The segregation of sulphur leads to the formation of a c(2×2) structure. A sulphur coverage of 45 ng cm-2, consistent with the c(2×2) structure, was measured by the radiotracer method after chemisorption in gaseous H2S/H2 mixtures at 550° and 200 Torr. This sulphur monolayer is stable in a range of pH2S/pH2=7.4 × 10-5-6×10-4. Above this pressure, a preferential sulphidation of iron is observed. The effects of sulphur on the anodic dissolution and passivation of the alloy in acid solution were studied. Adsorbed sulphur promotes the dissolution and delays the passivation. When the alloy is doped with sulphur, bulk sulphur accumulates on the surface during the dissolution of Ni and Fe. This anodic segregation leads to the formation of an adsorbed layer of sulphur, followed by the growth of a sulphide which blocks the formation of the protective oxide film.  相似文献   

12.
The atomic structure of Fe-Si alloys with a silicon concentration of 5–8 at % (α-area of the phase diagram) was studied using X-ray diffraction. The effect of quenching after annealing at a disordering temperature of 850°C on the structural state of the alloys was elucidated. It is shown that the quenched samples are characterized by a short-range ordering; namely, there is a local B2-type order at a concentration of 5–6 at % Si and, in addition, DO3-phase clusters are formed at 8 at % Si. The atomic structure of B2 clusters and their nearest surroundings is established.  相似文献   

13.
We examined the thermal stability of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite by in situ and ex situ annealing. The Fe/SiOC multilayer thin films were grown via magnetron sputtering with controlled length scales on a surface-oxidized Si (100) substrate. These Fe/SiOC multilayers were in situ or ex situ annealed at temperature of 600 °C or lower. The thin multilayer sample (~10 nm) was observed to have a layer breakdown after 600 °C annealing. Diffusion starts from low groove angle triple junctions in Fe layers. In contrast, the thick multilayer structure (~70 nm) was found to be stable and an intermixed layer (FexSiyOz) was observed after 600 °C annealing. The thickness of the intermixed layer does not vary as annealing time goes up. The results suggest that the FexSiyOz layer can impede further Fe, Si and O diffusion, and assists in maintaining morphological stability.  相似文献   

14.
Multilayer Fe55Pt45(20 nm)/Pt(5 nm)/Cr100 ? x W x (80 nm)/glass structures, in which the Fe55Pt45 magnetic film has a face-centered tetragonal (FCT) structure of the L10 phase with the (001) texture, have been prepared using magnetron sputtering. The microstructure and texture of the FePt films have been studied as functions of the W content in the Cr100 ? x W x sublayer, where 0 < x < 25. It has been established that an increase in the W ion concentration leads to the formation of the (200) texture in the Cr100 ? x sublayer and to an increase in the Cr lattice constant. This is accompanied by a decrease in the temperature at which the facecentered cubic phase transforms into the FCT phase of the FePt films as a result of the increase in tensile stresses along the a axis. It has been found that the coercivity of FePt films deposited on CrW substrates increases with increasing W content in the Cr100 ? x W x sublayer because the CrW alloy thus formed precludes diffusion between the FePt film and the CrW sublayer. An additional 5-nm-thick intermediate Pt layer is also deposited to suppress diffusion between the FePt and CrW layers. As a result, the highly textured FePt(001) films intended for ultra-high density magnetic information recording are deposited on a substrate heated to a temperature of 400°C and the Cr85W115 sublayer.  相似文献   

15.
The effects of Si nanocluster (Si-nc) size on the energy transfer rate to Er ions were investigated through studies made on appropriate configurations of mutilayers (MLs) consisting in about 20 periods of Er-doped Si-rich SiO2/SiO2. These MLs were deposited by reactive magnetron sputtering at 650 °C and subsequently annealed at 900 °C. For Si-rich layer thickness or Si-nc larger than about 4 nm, the sensitizing effect of Si-nc towards rare earth ions is highly lowered because of the weak confinement of carriers and the loss of resonant excitation of Er through the upper levels (second, third, ...). The latter is liable to prevent the energy back transfer process, while the weak confinement reduces strongly the probability of no phonon radiative recombination necessary for the energy transfer from Si-nc to Er ions.  相似文献   

16.
The temperature dependence of the magnetization of (Fe/Si) n multilayer films with nanometer layers is investigated. The films are prepared through thermal evaporation under ultrahigh vacuum onto Si(100) and Si(111) single-crystal substrates. It is revealed that the thickness of individual iron layers in (Fe/Si) n multilayer films affects the magnetization and its temperature dependence. The inference is made that this dependence is associated with the formation of a chemical interface at the Fe-Si boundaries. The characteristics of the chemical interface in the (Fe/Si) n films are estimated.  相似文献   

17.
The atomic diffusion mechanisms associated with metallurgical failure of TaRhx diffusion barriers for Cu metallizations were studied by in situ transmission electron microscopy (TEM). The issues related to in situ heating of focused ion beam (FIB) prepared cross-sectional TEM samples that contain Cu thin films are discussed. The Cu layer in Si/(13 nm)TaRhx/Cu stacks showed grain growth and formation of voids at temperatures exceeding 550 °C. For Si/(43 nm)TaRhx/Cu stacks, grain growth of Cu was delayed to higher temperatures, i.e., 700 °C, and void formation was not observed. Extensive surface diffusion of Cu, however, preceded bulk diffusion. Therefore, a 10 nm film of electron beam evaporated C was deposited on both sides of the TEM lamellae to limit surface diffusion. This processing technique allowed for direct observation of atomic diffusion and reaction mechanisms across the TaRhx interface. Failure occurred by nucleation of orthorhombic RhSi particles at the Si/TaRhx interface. Subsequently, the barrier at areas adjacent to RhSi particles was depleted in Rh. This created lower density areas in the barrier, which facilitated diffusion of Cu to the Si substrate to form Cu3Si. The morphology of an in situ annealed lamella was compared with an ex situ bulk annealed sample, which showed similar reaction morphology. The sample preparation method developed in this study successfully prevented surface diffusion/delamination of the Cu layer and can be employed to understand the metallurgical failure of other potential diffusion barriers.  相似文献   

18.
Iron films have been grown on (1 1 0) GaAs substrates by atmospheric pressure metalorganic chemical vapor deposition at substrate temperatures (Ts) between 135°C and 400°C. X-ray diffraction (XRD) analysis showed that the Fe films grown at Ts between 200°C and 330°C were single crystals. Amorphous films were observed at Ts below 200°C and it was not possible to deposit films at Ts above 330°C. The full-width at half-maximum of the rocking curves showed that crystalline qualities were improved at Ts above 270°C. Single crystalline Fe films grown at different substrate temperature showed different structural behaviors in XRD measurements. Iron films grown at Ts between 200°C and 300°C showed bulk α-Fe like behavior regardless of film thickness (100–6400 Å). Meanwhile, Fe films grown at 330°C (144 and 300 Å) showed a biaxially compressed strain between substrate and epilayer, resulting in an expanded inter-planar spacing along the growth direction. Magnetization measurements showed that Fe films (>200 Å) grown at 280°C and 330°C were ferromagnetic with the in-plane easy axis along the [1 1 0] direction. For the thinner Fe films (⩽200 Å) regardless of growth temperature, square loops along the [1 0 0] easy axis were very weak and broad.  相似文献   

19.
The early stages of iron silicide formation in the Fe/SiO x /Si(100) ternary system during solid-phase epitaxy are studied by high-resolution (~100 meV) photoelectron spectroscopy using synchrotron radiation. The spectra of core and valence electrons taken after a number of isochronous heat treatments of the samples at 750°C are analyzed. It is found that the solid-phase reaction between Fe and Si atoms proceeds in the vicinity of the SiO x /Si interface, which metal atoms reach when deposited on the sample surface at room temperature. Iron silicide starts forming at 60°C. Solid-phase synthesis is shown to proceed in two stages: the formation of the metastable FeSi interfacial phase with a CsCl-like structure and the formation of the stable β-FeSi2 phase. During annealing, structural modification of the silicon oxide occurs, which shows up in the growth of the Si+4 peaks and attenuation of the Si+2 peaks.  相似文献   

20.
A fraction of a monolayer of Fe(CO)5 was deposited on a clean Papyex stack following an adsorption vapor pressure isotherm. Mössbauer spectra for kγ parallel and perpendicular to the film surface yield evidence of a first-order phase transition at T ~- K. The asymmetry of the spectrum suggests a possible average list of the molecular axis of ~50° to the surface normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号