首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulus frequency otoacoustic emission (SFOAE) sound pressure level (SPL) and latency were measured at probe frequencies from 500 to 4000 Hz and probe levels from 40 to 70 dB SPL in 16 normal-hearing adult ears. The main goal was to use SFOAE latency estimates to better understand possible source mechanisms such as linear coherent reflection, nonlinear distortion, and reverse transmission via the cochlear fluid, and how those sources might change as a function of stimulus level. Another goal was to use SFOAE latencies to noninvasively estimate cochlear tuning. SFOAEs were dominated by the reflection source at low stimulus levels, consistent with previous research, but neither nonlinear distortion nor fluid compression become the dominant source even at the highest stimulus level. At each stimulus level, the SFOAE latency was an approximately constant number of periods from 1000 to 4000 Hz, consistent with cochlear scaling symmetry. SFOAE latency decreased with increasing stimulus level in an approximately frequency-independent manner. Tuning estimates were constant above 1000 Hz, consistent with simultaneous masking data, but in contrast to previous estimates from SFOAEs.  相似文献   

2.
Input-output (I/O) functions for stimulus-frequency (SFOAE) and distortion-product (DPOAE) otoacoustic emissions were recorded in 30 normal-hearing adult ears using a nonlinear residual method. SFOAEs were recorded at half octaves from 500-8000 Hz in an L1=L2 paradigm with L2=0 to 85 dB SPL, and in a paradigm with L1 fixed and L2 varied. DPOAEs were elicited with primary levels of Kummer et al. [J. Acoust. Soc. Am. 103, 3431-3444 (1998)] at f2 frequencies of 2000 and 4000 Hz. Interpretable SFOAE responses were obtained from 1000-6000 Hz in the equal-level paradigm. SFOAE levels were larger than DPOAEs levels, signal-to-noise ratios were smaller, and I/O functions were less compressive. A two-slope model of SFOAE I/O functions predicted the low-level round-trip attenuation, the breakpoint between linearity and compression, and compressive slope. In ear but not coupler recordings, the noise at the SFOAE frequency increased with increasing level (above 60 dB SPL), whereas noise at adjacent frequencies did not. This suggests the existence of a source of signal-dependent noise producing cochlear variability, which is predicted to influence basilar-membrane motion and neural responses. A repeatable pattern of notched SFOAE I/O functions was present in some ears, and explained using a two-source mechanism of SFOAE generation.  相似文献   

3.
Lower sideband distortion product otoacoustic emissions (DPOAEs), measured in the ear canal upon stimulation with two continuous pure tones, are the result of interfering contributions from two different mechanisms, the nonlinear distortion component and the linear reflection component. The two contributors have been shown to have a different amplitude and, in particular, a different phase behavior as a function of the stimulus frequencies. The dominance of either component was investigated in an extensive (f1 ,f2) area study of DPOAE amplitude and phase in the guinea pig, which allows for both qualitative and quantitative analysis of isophase contours. Making a minimum of additional assumptions, simple relations between the direction of constant phase in the (f ,f2) plane and the group delays in f1-sweep, f2-sweep, and fixed f2/f1 paradigms can be derived, both for distortion (wave-fixed) and reflection (place-fixed) components. The experimental data indicate the presence of both components in the lower sideband DPOAEs, with the reflection component as the dominant contributor for low f2/f1 ratios and the distortion component for intermediate ratios. At high ratios the behavior cannot be explained by dominance of either component.  相似文献   

4.
Stimulus frequency otoacoustic emission (SFOAE) input-output (I/O) functions were elicited in normal-hearing adults using unequal-frequency primaries in equal-level and fixed-suppressor level (Ls) conditions. Responses were repeatable and similar across a range of primary frequency ratios in the fixed-Ls condition. In comparison to equal-frequency primary conditions [Schairer, Fitzpatrick, and Keefe, J. Acoust. Soc. Am. 114, 944-966 (2003)], the unequal-frequency, fixed-Ls condition appears to be more useful for characterizing SFOAE response growth and relating it to basilar-membrane response growth, and for testing the ability to predict audiometric thresholds. Simultaneously recorded distortion-product OAE (DPOAE) I/O functions had higher thresholds than SFOAE I/O functions, and they identified the onset of the nonlinear-distortion mechanism in SFOAEs. DPOAE threshold often corresponded to nonmonotonicities in SFOAE I/O functions. This suggests that the level-dependent nonmonotonicities and associated phase shifts in SFOAE I/O functions were due to varying degrees of cancellation of two sources of SFOAE, such as coherent reflection and distortion mechanisms. Level-dependent noise was observed on-band (at the frequencies of the stimuli) but not off-band, or in the DPOAEs. The variability was observed in ears with normal hearing and ears with cochlear implants. In general, these results indicate the source of the variability is biological, possibly from within the middle ear.  相似文献   

5.
Two aspects of the intermodulation distortion product at 2f1-f2 generated by normal human ears and measured acoustically in the ear canal were studied: (1) its relation to tone-evoked and spontaneous otoacoustic emissions, and (2) its relation to the perceived combination tone at the same frequency. With regard to (1), substantial differences among ears in the detectability of emissions were observed; ears tended to exhibit all or none of the emission types that were sought. Within ears possessing emissions, the magnitudes of tone-evoked emissions and acoustic distortion showed a similar dependence on frequency. With regard to (2), a three-primary-tone stimulus was employed to ask whether the ear canal acoustic distortion tone is canceled under the same stimulus conditions that produce perceptual cancellation. Simultaneous cancellation of perceptual and acoustic distortion was produced rarely. Results are interpreted qualitatively with a model in which primary tones produce distortion at their interaction region within the cochlea; this distortion propagates to the distortion-frequency place where it mediates perception. This same distortion wave produces emission components at additional locations, including the primary-tone interaction region, which sum vectorially to mediate the emitted acoustic distortion product.  相似文献   

6.
The goal of this study was to determine the extent to which the variability seen in distortion product otoacoustic emissions (DPOAEs), among ears with normal hearing, could be accounted for. Several factors were selected for investigation, including behavioral threshold, differences in middle-ear transmission characteristics either in the forward or the reverse direction, and differences in contributions from the distortion and reflection sources. These variables were assessed after optimizing stimulus parameters for individual ears at each frequency. A multiple-linear regression was performed to identify whether the selected variables, either individually or in combination, explained significant portions of variability in DPOAE responses. Behavioral threshold at the f(2) frequency and behavioral threshold squared at that same frequency explained the largest amount of variability in DPOAE level, compared to the other variables. The combined model explained a small, but significant, amount of variance in DPOAE level at five frequencies. A large amount of residual variability remained, even at frequencies where the model accounted for significant amounts of variance.  相似文献   

7.
Primary and secondary sources combine to produce the 2f1-f2 distortion product otoacoustic emission (DPOAE) measured in the ear canals of humans. DPOAEs were obtained in nine normal-hearing subjects using a fixed-f2 paradigm in which f1 was varied. The f2 was 2 or 4 kHz, and absolute and relative primary levels were varied. Data were obtained with and without a third tone (f3) placed 15.6 Hz below 2f1-f2. The level of f3 was varied in order to suppress the stimulus frequency otoacoustic emission (SFOAE) coming from the 2f1-f2 place. These data were converted from the complex frequency domain into an equivalent time representation using an inverse fast Fourier transform (IFFT). IFFTs of unsuppressed DPOAE data were characterized by two or more peaks. Relative amplitudes of these peaks depended on overall primary level and on primary-level differences. The suppressor eliminated later peaks, but early peaks remained relatively unaltered. Results are interpreted to mean that the DPOAE measured in humans includes components from the f2 place (intermodulation distortion) and DP place (in the form of a SFOAE). These findings build on previous work by providing evidence that multiple peaks in the IFFT are due to a secondary source at the DP place.  相似文献   

8.
The results of studies of the physiological vulnerability of distortion-product otoacoustic emissions (DPOAEs) suggest that the DPOAE at 2f1-f2 in vertebrate ears is generated by more than one source. The principal aims of the present study were to provide independent evidence for the existence of more than one DPOAE source, and to determine the contributions of each to the ear-canal 2f1-f2 signal. To accomplish these aims, specific stimulus parameters were separately and systematically varied to provide detailed parametric information regarding 2f1-f2 DPOAE amplitude and phase in normal ears of awake rabbits. The findings indicate that two discrete sources, demonstrating differential dependence on stimulus parameters, dominate the generation of the 2f1-f2 DPOAE. One source of distortion is dominant above 60-70 dB SPL at moderate primary-frequency separations, and at all stimulus levels when the primary tones are closely spaced. The other source is dominant below 60-70 dB SPL at moderate primary-frequency separations, and may be dominant at all stimulus levels when the primary tones are widely separated in frequency. The results suggest that by varying stimulus parameters, it may be possible to independently study the two generator mechanisms.  相似文献   

9.
For a given set of stimulus frequencies (f1 ,f2), the level of distortion product otoacoustic emissions (DPOAEs) varies with the levels of the stimulus tones. By variation of the stimulus levels, L1,L2-maps for DPOAEs can be constructed. Here, we report on L1 ,L2-maps for DPOAEs from the frog ear. In general, these maps were similar to those obtained from the mammalian cochlea. We found a conspicuous difference between the equal-level contour lines for low-level and high-level DPOAEs, which could be modeled by a saturating and an expansive nonlinearity, respectively. The transition from the high-level to the low-level response was accompanied by a DPOAE phase-change, which increased from 0 to pi rad with increasing frequency. These results suggest that in the frog low-level and high-level DPOAEs are generated by separate nonlinear mechanisms. Also, there was a conspicuous difference in the growth of the low-level emissions from the two anuran auditory papillae. In the basilar papilla, this growth was expansive for the lowest stimulus levels and saturated for intermediate levels. This is consistent with the behavior of a Boltzman nonlinearity. In the amphibian papilla this growth was compressive, suggesting the additional effect of a compressive amplification mechanism on the generation of DPOAEs.  相似文献   

10.
Distortion product otoacoustic emissions (DPOAEs) measured in the ear canal represent the vector sum of components produced at two regions of the basilar membrane by distinct cochlear mechanisms. In this study, the effect of stimulus level on the 2f(1)?- f(2) DPOAE phase was evaluated in 22 adult subjects across a three-octave range. Level effects were examined for the mixed DPOAE signal measured in the ear canal and after unmixing components to assess level effects individually on the distortion (generated at the f(1), f(2) overlap) and reflection (at f(dp)) sources. Results show that ear canal DPOAE phase slope becomes steeper with decreasing level; however, component analysis further explicates this result, indicating that interference between DPOAE components (rather than a shift in mechanics related to distortion generation) drives the level dependence of DPOAE phase measured in the ear canal. The relative contribution from the reflection source increased with decreasing level, producing more component interference and, at times, a reflection-dominated response at the lowest stimulus levels. These results have implications for the use of DPOAE phase to study cochlear mechanics and for the potential application of DPOAE phase for clinical purposes.  相似文献   

11.
A theoretical framework for describing the effects of nonlinear reflection on otoacoustic emission fine structure is presented. The following models of cochlear reflection are analyzed: weak nonlinearity, distributed roughness, and a combination of weak nonlinearity and distributed roughness. In particular, these models are examined in the context of stimulus frequency otoacoustic emissions (SFOAEs). In agreement with previous studies, it is concluded that only linear cochlear reflection can explain the underlying properties of cochlear fine structures. However, it is shown that nonlinearity can unexpectedly, in some cases, significantly modify the level and phase behaviors of the otoacoustic emission fine structure, and actually enhance the pattern of fine structures observed. The implications of these results on the stimulus level dependence of SFOAE fine structure are also explored.  相似文献   

12.
It has been proposed that the clinical accuracy of distortion product otoacoustic emissions (DPOAEs) is affected by the interaction of distortion and reflection sources contributing to the response. This study evaluated changes in dichotomous-decision test performance and threshold-prediction accuracy when DPOAE source contribution was controlled. Data were obtained from 205 normal and impaired ears with L(2) ranging from 0 to 80 dB SPL and f(2)=2 and 4 kHz. Data were collected for control conditions (no suppressor, f(3)) and with f(3) presented at three levels that previously had been shown to reduce the reflection-source contribution. The results indicated that controlling source contribution with a suppressor did not improve diagnostic accuracy (as reflected by relative operating characteristic curve area) and frequently resulted in poorer test performance compared to control conditions. Likewise, correlations between DPOAE and behavioral thresholds were not strengthened when using the suppressors to control source contribution. While improvements in test accuracy were observed for a subset of subjects (normal ears with the smallest DPOAEs and impaired ears with the largest DPOAEs), the lack of improvement for the larger, unselected subject group suggests that DPOAEs should be recorded in the clinic without attempting to control the source contribution with a suppressor.  相似文献   

13.
A detailed measurement of distortion product otoacoustic emission (DPOAE) fine structure was used to extract estimates of the two major components believed to contribute to the overall DPOAE level in the ear canal. A fixed-ratio paradigm was used to record DPOAE fine structure from three normal-hearing ears over a range of 400 Hz for 12 different stimulus-frequency ratios between 1.053 and 1.36 and stimulus levels between 45 and 75 dB SPL. Inverse Fourier transforms of the amplitude and phase data were filtered to extract the early component from the generator region of maximum stimulus overlap and the later component reflected from the characteristic frequency region of the DPOAE. After filtering, the data were returned to the frequency domain to evaluate the impact of the stimulus-frequency ratio and stimulus level on the relative levels of the components. Although there were significant differences between data from different ears some consistent patterns could be detected. The component from the overlap region of the stimulus tones exhibits a bandpass shape, with the maximum occurring at a ratio of 1.2. The mean data from the DPOAE characteristic frequency region also exhibits a bandpass shape but is less sharply tuned and exhibits greater variety across ears and stimulus levels. The component from the DPOAE characteristic frequency region is dominant at ratios narrower than approximately 1.1 (the transition varies between ears). The relative levels of the two components are highly variable at ratios greater than 1.3 and highly dependent on the stimulus level. The reflection component is larger at all ratios at the lowest stimulus level tested (45/45 dB SPL). We discuss the factors shaping DPOAE-component behavior and some cursory implications for the choice of stimulus parameters to be used in clinical protocols.  相似文献   

14.
This paper tests key predictions of the "two-mechanism model" for the generation of distortion-product otoacoustic emissions (DPOAEs). The two-mechanism model asserts that lower-sideband DPOAEs constitute a mixture of emissions arising not simply from two distinct cochlear locations (as is now well established) but, more importantly, by two fundamentally different mechanisms: nonlinear distortion induced by the traveling wave and linear coherent reflection off pre-existing micromechanical impedance perturbations. The model predicts that (1) DPOAEs evoked by frequency-scaled stimuli (e.g., at fixed f2/f1) can be unmixed into putative distortion- and reflection-source components with the frequency dependence of their phases consistent with the presumed mechanisms of generation; (2) The putative reflection-source component of the total DPOAE closely matches the reflection-source emission (e.g., low level stimulus-frequency emission) measured at the same frequency under similar conditions. These predictions were tested by unmixing DPOAEs into components using two completely different methods: (a) selective suppression of the putative reflection source using a third tone near the distortion-product frequency and (b) spectral smoothing (or, equivalently, time-domain windowing). Although the two methods unmix in very different ways, they yield similar DPOAE components. The properties of the two DPOAE components are consistent with the predictions of the two-mechanism model.  相似文献   

15.
Otoacoustic emissions (OAEs) evoked by broadband clicks and by single tones are widely regarded as originating via different mechanisms within the cochlea. Whereas the properties of stimulus-frequency OAEs (SFOAEs) evoked by tones are consistent with an origin via linear mechanisms involving coherent wave scattering by preexisting perturbations in the mechanics, OAEs evoked by broadband clicks (CEOAEs) have been suggested to originate via nonlinear interactions among the different frequency components of the stimulus (e.g., intermodulation distortion). The experiments reported here test for bandwidth-dependent differences in mechanisms of OAE generation. Click-evoked and stimulus-frequency OAE input/output transfer functions were obtained and compared as a function of stimulus frequency and intensity. At low and moderate intensities human CEOAE and SFOAE transfer functions are nearly identical. When stimulus intensity is measured in "bandwidth-compensated" sound-pressure level (cSPL), CEOAE and SFOAE transfer functions have equivalent growth functions at fixed frequency and equivalent spectral characteristics at fixed intensity. This equivalence suggests that CEOAEs and SFOAEs are generated by the same mechanism. Although CEOAEs and SFOAEs are known by different names because of the different stimuli used to evoke them, the two OAE "types" are evidently best understood as members of the same emission family.  相似文献   

16.
2f1-f2 and 2 f2-f1 distortion product otoacoustic emissions (DPOAEs) were recorded from both ears of male and female Rana pipiens pipiens and Rana catesbeiana. The input-output (I/O) curves obtained from the amphibian papilla (AP) of both frog species are analogous to I/O curves recorded from mammals suggesting that, similarly to the mammalian cochlea, there may be an amplification process present in the frog AP. DPOAE level dependence on L1-L2 is different from that in mammals and consistent with intermodulation distortion expectations. Therefore, if a mechanical structure in the frog inner ear is functioning analogously to the mammalian basilar membrane, it must be more broadly tuned. DPOAE audiograms were obtained for primary frequencies spanning the animals' hearing range and selected stimulus levels. The results confirm that DPOAEs are produced in both papillae, with R. catesbeiana producing stronger emissions than R. p. pipiens. Consistent with previously reported sexual dimorphism in the mammalian and anuran auditory systems, females of both species produce stronger emissions than males. Moreover, it appears that 2 f1-f2 in the frog is generated primarily at the DPOAE frequency place, while 2 f2-f1 is generated primarily at a frequency place around the primaries. Regardless of generation place, both emissions within the AP may be subject to the same filtering mechanism, possibly the tectorial membrane.  相似文献   

17.
Both distortion product otoacoustic emissions (DPOAEs) and auditory steady-state responses (ASSRs) provide frequency-specific assessment of hearing. However, each method suffers from some restrictions. Hearing losses above 50 dB HL are not quantifiable using DPOAEs and their performance at frequencies below 1 kHz is limited, but their recording time is short. In contrast, ASSRs are a time-consuming method but have the ability to determine hearing thresholds in a wider range of frequencies and hearing losses. Thus, recording DPOAEs and ASSRs simultaneously at their adequate frequencies and levels could decrease the overall test time considerably. The goal of the present study was to develop a parameter-setting and test-protocol to measure DPOAEs and ASSRs binaurally and simultaneously at multiple frequencies. Ten normal-hearing and 23 hearing-impaired subjects participated in the study. The interaction of both responses when stimulated simultaneously at frequencies between 0.25 and 6 kHz was examined. Two limiting factors need to be kept. Frequency distance between ASSR carrier frequency f(c) and DPOAE primary tone f(2) needs to be at least 1.5 octaves, and DPOAEs may not be measured if the ASSR stimulus level is 70 dB SPL or above. There was a significant correlation between pure-tone and DPOAE/ASSR-thresholds in sensorineural hearing loss ears.  相似文献   

18.
Coherent-reflection theory explains the generation of stimulus-frequency and transient-evoked otoacoustic emissions by showing how they emerge from the coherent "backscattering" of forward-traveling waves by mechanical irregularities in the cochlear partition. Recent published measurements of stimulus-frequency otoacoustic emissions (SFOAEs) and estimates of near-threshold basilar-membrane (BM) responses derived from Wiener-kernel analysis of auditory-nerve responses allow for comprehensive tests of the theory in chinchilla. Model predictions are based on (1) an approximate analytic expression for the SFOAE signal in terms of the BM traveling wave and its complex wave number, (2) an inversion procedure that derives the wave number from BM traveling waves, and (3) estimates of BM traveling waves obtained from the Wiener-kernel data and local scaling assumptions. At frequencies above 4 kHz, predicted median SFOAE phase-gradient delays and the general shapes of SFOAE magnitude-versus-frequency curves are in excellent agreement with the measurements. At frequencies below 4 kHz, both the magnitude and the phase of chinchilla SFOAEs show strong evidence of interference between short- and long-latency components. Approximate unmixing of these components, and association of the long-latency component with the predicted SFOAE, yields close agreement throughout the cochlea. Possible candidates for the short-latency SFOAE component, including wave-fixed distortion, are considered. Both empirical and predicted delay ratios (long-latency SFOAE delay/BM delay) are significantly less than 2 but greater than 1. Although these delay ratios contradict models in which SFOAE generators couple primarily into cochlear compression waves, they are consistent with the notion that forward and reverse energy propagation in the cochlea occurs predominantly by means of traveling pressure-difference waves. The compelling overall agreement between measured and predicted delays suggests that the coherent-reflection model captures the dominant mechanisms responsible for the generation of reflection-source otoacoustic emissions.  相似文献   

19.
Distortion-product otoacoustic emissions (DPOAEs) were measured as level/phase (L/P) maps in humans, rabbits, chinchillas, and rats with and without an interference tone (IT) placed either near the 2f(1)-f(2) DPOAE frequency place (f(dp)) or at one-third of an octave above the f(2) primary tone (1/3-oct IT). Vector differences between with and without IT conditions were computed to derive a residual composed of the DPOAE components removed by the IT. In humans, a DPOAE component could be extracted with the expected steep phase gradient indicative of reflection emissions by ITs near f(dp). In the laboratory species, ITs near f(dp) failed to produce any conclusive evidence for reflection components. For all species, 1/3-oct ITs extracted large DPOAE components presumably generated at or basal to the IT-frequency place that exhibited both distortion- and reflection-like phase properties. Together, these findings suggested that basal distortion components could assume reflection-like phase behavior when the assumptions of cochlear-scaling symmetry, the basis for shallow phase gradients for constant f(2)/f(1) ratio sweeps, are violated. The present results contradict the common belief that DPOAE components associated with steep or shallow phase slopes are unique signatures for reflection emissions arising from f(dp) or distortion emissions generated near f(2), respectively.  相似文献   

20.
Distortion product otoacoustic emissions (DPOAEs) evoked by low-level tones are a sensitive indicator of outer hair cell (OHC) function. High-level DPOAEs are less vulnerable to cochlear insult, and their dependence on the OHC function is more controversial. Here, the mechanism underlying high-level DPOAE generation is addressed using a mutant mouse line lacking prestin, the molecular motor driving OHC somatic motility, required for cochlear amplification. With prestin deletion, attenuated DPOAEs were measurable at high sound levels. DPOAE thresholds were shifted by approximately 50 dB, matching the loss of cochlear amplifier gain measured in compound action potentials. In contrast, at high sound levels, distortion products in the cochlear microphonic (CM) of mutants were not decreased re wildtypes (expressed re CM at the primaries). Distortion products in both CM and otoacoustic emissions disappeared rapidly after death. The results show that OHC somatic motility is not necessary for the production of DPOAEs at high SPLs. They also suggest that the small, physiologically vulnerable DPOAE that remains without prestin-based motility is due directly to the mechanical nonlinearity associated with stereociliary transduction, and that this stereocilia mechanical nonlinearity is robustly coupled to the motion of the cochlear partition to the extent that it can drive the middle ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号