首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   

2.
A fiberoptic evanescent-wave sensor has been developed for the measurement of antinuclear antibodies in sera from patients and healthy individuals. The sensor was constructed on the basis of modification of the unclad portion of an optical fiber with self-assembled gold colloids, where the colloidal gold surface was further functionalized with extractable nuclear antigens. Results show that detection of antinuclear antibodies by this sensor agrees quantitatively with the clinically accepted enzyme-linked immunosorbent assay (ELISA) method. This sensing platform has the following advantages: label-free and real-time detection capability, simple to construct and use, highly sensitive, and does not require a secondary antibody. The sensitivity of this platform is at least an order of magnitude higher than that of the ELISA method and thus may lead to a new direction in recognition of immune response. Biomolecular binding of antinuclear antibodies (ANA) with extractable nuclear antigens (ENA)-functionalized gold nanoparticles results in a change of surface plasmon absorption. When light propagates in an optical fiber by multiple total internal reflection, such a change in signal can be significantly enhanced.  相似文献   

3.

We describe a sensitive method for the immunochromatographic determination of aflatoxin B1. It is based on the following steps: 1) Competitive interaction between non-labeled specific primary antibodies and target antigens in a sample and in the test zone of a membrane; 2) detection of the immune complexes on the membrane by using a secondary antibodies labeled with gold nanoparticles. The method enables precise adjustment of the required quantities of specific antibodies and the colloidal (gold) marker. It was applied in a lateral flow format to the detection of aflatoxin B1 and exhibits a limit of detection (LOD) of 160 pg · mL−1 if detected visually, and of 30 pg · mL−1 via instrumental detection. This is significantly lower than the LOD of 2 ng · mL−1 achieved by conventional lateral flow analysis using the same reagents.

Immunochromatography with secondary labeled antibodies caused 10-fold decrease of detection limit

  相似文献   

4.
In this work, we used a model assay system (polyclonal human IgG–goat antihuman IgG) to elucidate some of the key factors that influence the analytical performance of bioassays that employ metal-enhanced fluorescence (MEF) using silver nanoparticles (NPs). Cy5 dye was used as the fluorescent label, and results were compared with a standard assay performed in the absence of NPs. Two sizes of silver NPs were prepared with respective diameters of 60 ± 10 and 149 ± 16 nm. The absorption spectra of the NPs in solution were fitted accurately using Mie theory, and the dipole resonance of the 149-nm NPs in solution was found to match well with the absorption spectrum of Cy5. Such spectral matching is a key factor in optimizing MEF. NPs were deposited uniformly and reproducibly on polyelectrolyte-coated polystyrene substrates. Compared to the standard assay performed without the aid of NPs, significant improvements in sensitivity and in limit of detection (LOD) were obtained for the assay with the 149-nm NPs. An important observation was that the relative enhancement of fluorescence increased as the concentration of antigen increased. The metal-assisted assay data were analyzed using standard statistical methods and yielded a LOD of 0.086 ng/mL for the spectrally matched NPs compared to a value of 5.67 ng/mL obtained for the same assay in the absence of NPs. This improvement of ∼66× in LOD demonstrates the potential of metal-enhanced fluorescence for improving the analytical performance of bioassays when care is taken to optimize the key determining parameters.   相似文献   

5.
Concentrations of cationic surfactants in aqueous solutions have been estimated on the basis of changes in the color of gold nanoparticles, used as reporter probes. We have shown that the colors of gold nanoparticles with anionic protective groups on their surfaces shift from red to indigo/purple and then back to red in a range of cationic surfactant solutions in which concentrations vary from very low to above the theoretical CMCs. The color changes occur near the theoretical CMCs, presumably because the presence of surfactant micelles in the solution prevents the gold nanoparticles from aggregating. We have used gold nanoparticles as reporter probes to determine the concentrations of cationic surfactants in products such as hair conditioners, which often contain large amounts of alkyltrimethylammonium halides. Although this approach can only provide an estimate, it can be performed simply by addition of a given amount of gold nanoparticles to a series of diluted solutions, without the need for instruments or labor-intensive procedures. Figure Photographs of a series of diluted hair conditioner solutions with added gold nanoparticles
  相似文献   

6.
Real-time quantitative polymerase chain reaction (qPCR) is the industry standard technique for the quantitative analysis of nucleic acids due to its unmatched sensitivity and specificity. Optimisation and improvements of this fundamental technique over the past decade have largely consisted of attempts to allow faster and more accurate ramping between critical temperatures by improving assay reagents and the thermal geometry of the PCR chamber. Small gold nanoparticles (Au-NPs) have been reported to improve PCR yield under fast cycling conditions. In this study, we investigated the effect of Au-NPs on optimised real-time qPCR assays by amplifying DNA sequences from genetically modified canola in the presence and absence of 0.9 nM Au-NPs of diameter 12 ± 2nm. Contrary to expectations, we found that Au-NPs altered the PCR amplification profile when using a SYBR Green I detection system due to fluorescence quenching; furthermore, high-resolution melt (HRM) analysis demonstrated that Au-NPs destabilised the double-stranded PCR product. The results indicate that effects on the assay detection system must be carefully evaluated before Au-NPs are included in any qPCR assay. Figure Raw amplification profiles in the presence and absence of gold nanoparticles  相似文献   

7.
The interaction of 11-mercaptoundecanoic acid capped gold nanoparticles (MUA-GNPs) with europium ions and aminoacids has been studied by UV-Vis spectrophotometry, fluorescence, confocal fluorescence microscopy, resonance light scattering and TEM. Results demonstrated that hyper-Rayleigh scattering emission occurs upon the addition of lysine to the MUA-GNPs–Eu(III) system, thus providing an inherently sensitive method for lysine determination. The effects of geometrical factors of the gold nanoparticles (aspect ratio, particle size, cluster formation) and the surrounding medium (pH) on this behavior are discussed. The cooperative binding interactions of Eu3+ and lysine with gold nanoparticles permitted the discrimination of lysine from other amino acids. The probable mechanism for the spectral changes and the enhanced resonance light scattering observed is outlined. Figure Gold nanoparticle resonance light scattering plasmon enhancement through cooperative binding with europium and lysine  相似文献   

8.
Detection of TNT is an important environmental and security concern all over the world. We herein report the performance and comparison of four immunoassays for rapid and label-free detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance (SPR). The immunosensor surface was constructed by immobilization of a home-made 2,4,6-trinitrophenyl–keyhole limpet hemocyanin (TNPh–KLH) conjugate onto an SPR gold surface by simple physical adsorption within 10 min. The immunoreaction of the TNPh–KLH conjugate with four different antibodies, namely, monoclonal anti-TNT antibody (M-TNT Ab), monoclonal anti-trinitrophenol antibody (M-TNP Ab), polyclonal anti-trinitrophenyl antibody (P-TNPh Ab), and polyclonal anti-TNP antibody (P-TNP Ab), was studied by SPR. The principle of indirect competitive immunoreaction was employed for quantification of TNT. Among the four antibodies, the P-TNPh Ab prepared by our group showed highest sensitivity with a detection limit of 0.002 ng/mL (2 ppt) TNT. The lowest detection limits observed with other commercial antibodies were 0.008 ng/mL (8 ppt), 0.25 ng/mL (250 ppt), and 40 ng/mL (ppb) for M-TNT Ab, P-TNP Ab, and M-TNP Ab, respectively, in the similar assay format. The concentration of the conjugate and the antibodies were optimized for use in the immunoassay. The response time for an immunoreaction was 36 s and a single immunocycle could be done within 2 min, including the sensor surface regeneration using pepsin solution. In addition to the quantification of TNT, all immunoassays were evaluated for robustness and cross-reactivity towards several TNT analogs.   相似文献   

9.
A method based on use of functionalized gold nanoparticles on polyethylenimine film has been developed for colorimetric detection of immunoglobulin G (IgG). The immunogold nanoparticles were immobilized on quartz slides by recognition between antibody and antigen, with the antigen chemically adsorbed on the polyethylenimine film. By measurement of the UV–visible spectra of the immobilized immunogold, detection of h-IgG was achieved. The detection limit for h-IgG by use of this method can be as low as 0.01 μg mL−1. This method is quite promising for numerous applications in immunoassay. Figure  相似文献   

10.
A chemiluminescent (CL) detection method has been developed for DNA hybridization. The assay relies on a sandwich-type DNA hybridization in which gold nanoparticles modified with alkylthiol-capped oligonucleotide strands are used as probes to monitor the presence of the specific target DNA. The , which is the dissolving product of the gold nanoparticles anchored on the DNA hybrids, serves as an analyte in the H2O2–luminol– CL reaction for the indirect measurement of the target DNA. The combination of the remarkable sensitivity of the CL analysis with the large number of released from each DNA hybrid allows a detection limit at levels as low as 0.1 pM of the target DNA. Moreover, with a further silver amplification step, the detection limit will be pushed down to the femtomolar domain.   相似文献   

11.
An innovative scheme for signal amplification using random tetramer-modified gold nanoparticles, termed “nanoamplicons,” has been developed for hybridization assay without PCR. Large numbers of nanoamplicons could be integrated onto one target, providing much greater amplification than the larger nanoparticles usually adopted. Using M13mp18 single-strand DNA as a target, this concept is shown to be a feasible approach to detecting 0.17 amol L−1 DNA without target amplification, based on microgravimetric detection of the adsorption of the probe–target–nanoamplicons complex via thiol–gold binding. To our knowledge, this method has a sensitivity that is close to that of PCR and superior to those of nanoparticle-based methods reported previously. Additionally, this novel nanoamplicon could be prepared in the same way and used for all diagnostic tests; such universality would make the nanoamplicons highly advantageous for the generalization and standardization of bioassays, and when applying this new technology in clinical laboratories. Figure A novel signal amplification method for DNA detection with subattomolarsensitivity has been developed using random tetramer-modified gold nanoparticlesas nanoamplicons, which are easily prepared with high uniformity and can be universally adaptedto any sequences  相似文献   

12.
We report our findings that natural flavonoids such as quercetin, daizeol and puerarin can act as reductants for the enlargement of gold nanoparticles (Au-NPs). Consequently, the UV–vis spectra of a solution containing Au-NPs will be gradually changed, and the molecules of the natural herbs can be detected by making use of changes in the UV–visible spectra. Furthermore, we have prepared a self-assembled monolayer modified electrode by modifying cysteamine on a gold substrate electrode, which is further modified by some Au-NP seeds. When the modified electrode is immersed in a solution containing flavonoids and tetrachloroauric acid as a gold source for the growth of the Au-NP seeds, with the increase of the concentration of flavonoids, the Au-NP seeds on the surface of the modified electrode can be enlarged to varying degrees. As a result, the peak currents in the corresponding cyclic voltammograms are inversely decreased, and simultaneously the peak separation is increased. Therefore, an electrochemical method to detect flavonoids is also proposed. Compared with the optical detection method, the electrochemical method has an extraordinarily lower detection limit and a significantly extended detection range. Moreover, the optical and electrochemical experimental results can be also used to assay and compare the relative antioxidant activities of the flavonoids. Figure Enlargement of Au nanoparticles by flavonoids at cysteamine modified electrode  相似文献   

13.
An immunochromatographic strip (ICS) using urchin-like gold nanoparticles (UGNs) for sensitive detection of fumonisin B1 (FB1) was developed to meet the requirement for rapidly monitoring FB1 in grain samples. The sensitivity of the ICS was 5.0 ng/mL, which represents a fourfold increase in sensitivity over conventional strip preparation using colloidal gold as the antibody-labeled probe. Analysis of FB1 in grain samples showed that data obtained from the strip tests were in a good agreement with those obtained from HPLC and enzyme-linked immunosorbent assays (ELISAs). This qualitative test did not require any specialized equipment, and the detection time was less than 5 min, which is suitable for on-site testing of FB1 in grain samples. Overall, to our knowledge, this is the first report of using a UGN as the antibody-labeled probe for sensitive detection of FB1 in grains using an ICS.
Graphical Abstract Preparation of ICS using conventional colloidal gold and urchin-like gold nanoparticle, respectively
  相似文献   

14.
We report the development of a novel quartz crystal microbalance immunosensor with the simultaneous measurement of resonance frequency and motional resistance for the detection of antibodies to double-stranded DNA (dsDNA). The immobilization of poly(l-lysine) and subsequent complexation with DNA resulted in formation of a sensitive dsDNA-containing nanofilm on the surface of a gold electrode. Atomic force microscopy has been applied for the characterization of a poly(l-lysine)–DNA film. After the blocking with bovine serum albumin, the immunosensor in flow-injection mode was used to detect the antibodies to dsDNA in purified protein solutions of antibodies to dsDNA and to single-stranded DNA, monoclonal human immunoglobulin G, DNase I and in blood serum of patients with bronchial asthma and systemic lupus erythematosus. Experimental results indicate high sensitivity and selectivity of the immunosensor. In memoriam Prof. Victor G. Vinter  相似文献   

15.
We report the multiplexed, simultaneous analysis of antigen–antibody interactions that involve human immunoglobulin G (IgG) on a gold substrate by the surface plasmon resonance imaging method. A multichannel, microfluidic chip was fabricated from poly(dimethylsiloxane) (PDMS) to selectively functionalize the surface and deliver the analyte solutions. The sensing interface was constructed using avidin as a linker layer between the surface-bound biotinylated bovine serum albumin and biotinylated anti-human IgG antibodies. Four mouse anti-human IgG antibodies were selected for evaluation and the screening was achieved by simultaneously monitoring protein–protein interactions under identical conditions. Antibody–antigen binding affinities towards human immunoglobulin were quantitatively compared by employing Langmuir adsorption isotherms for the analysis of SPRi responses obtained under equilibrium conditions. We were able to identify two IgG samples with higher affinities towards the target, and the determined binding kinetics falls within the typical range of values reported in the literature. Direct measurement of proteins in serum samples by SPR imaging was achieved by developing methods to minimize nonspecific adsorption onto the avidin-functionalized surface, and a limit of detection (LOD) of 6.7 nM IgG was obtained for the treated serum samples. The combination of SPR imaging and multichannel PDMS chips offers convenience and flexibility for sensitive and label-free measurement of protein–protein interactions in complex conditions and enables high-throughput screening of pharmaceutically significant molecules. Figure Microchannel SPR imaging for protein–protein interactions  相似文献   

16.
Monolayer-protected gold nanoparticles (AuNPs) feature unique surface properties that enable numerous applications. Thus, there is a need for simple, rapid, and accurate methods to confirm the surface structures of these materials. Here, we describe how laser desorption/ionization mass spectrometry (LDI-MS) can be used to characterize AuNPs with neutral, positively, and negatively charged surface functional groups. LDI readily desorbs and ionizes the gold-bound ligands to produce both free thiols and disulfide ions in pure and complex samples. We also find that LDI-MS can provide a semi-quantitative measure of the ligand composition of mixed-monolayer AuNPs by monitoring mixed disulfide ions that are formed. Overall, the LDI-MS approach requires very little sample, provides an accurate measure of the surface ligands, and can be used to monitor AuNPs in complex mixtures.   相似文献   

17.
This work reports the systematic preparation of biosensors through the use of functionalized glass substrates, noble metal gold colloid, and measurement by localized surface plasmon resonance (LSPR). Glass substrate was modified through chemical silanization, and the density of gold colloid was carefully controlled by optimizing the conditions of silanization through the use of mixed silanes and selective mixing procedures. At this point, samples were exposed to bioreagents and changes in the shallow dielectric constant around the particles were observed by dark-field spectroscopy. Biological binding of high affinity systems (biotin/streptavidin and antigen/antibody) was subsequently investigated by optimizing coating layers, receptor concentration profiling, and finally quantitative determination of the analyte of interest, which in this case was a small organic molecule—the widely used, synthetic anabolic steroid called stanozolol. For this system, high specificity was achieved (>97%) through extensive nonspecific binding tests, with a sensitivity measurable to a level below the minimum required performance level (MRPL) as determined by standard chromatographic methods. Analytical best-fit parameters of Hillslope and regression coefficient are also commented on for the final LSPR biosensor. The LSPR biosensor showed good reproducibility (<5% RSD) and allowed for rapid preparation of calibration curves and determination of the analyte (measurement time of each sample ca. 2 min). As an alternative method for quantitative steroidal analysis, this approach significantly simplifies the detection setup while reducing the cost of analysis. In addition the system maintains comparable sensitivity to standard surface plasmon resonance methods and offers great potential for miniaturization and development of multiplexed devices. Figure Schematic of sensor configuration indicating both min and max controls and associatedexample localized resonance curves Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
We have developed a method using on-line solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry (SPE-HPLC-MS/MS) and isotope dilution quantification to measure atrazine and seven atrazine metabolites in urine. The metabolites measured were hydroxyatrazine, diaminochloroatrazine, desisopropylatrazine, desethylatrazine, desethylatrazine mercapturate, atrazine mercaturate and atrazine itself. Our method has good precision (relative standard deviations ranging from 4 to 20% at 5, 10 and 50 ng/mL), extraction efficiencies of 67 to 102% at 5 and 25 ng/mL, relative recoveries of 87 to 112% at 5, 25, 50 and 100 ng/mL limits of detection (LOD) ranging from 0.03 to 2.80 ng/mL. The linear range of our method spans from the analyte LOD to 100 ng/mL (40 ng/mL for atrazine and atrazine mercapturate) with R 2 values of greater than 0.999 and errors about the slope of less than 3%. Our method is rapid, cost-effective and suitable for large-scale sample analyses and is easily adaptable to other biological matrices. More importantly, this method will allow us to better assess human exposure to atrazine-related chemicals. Figure A schematic representation showing the elution of the analytes from the solid-phase extraction cartridge onto the analytical column for chromatographic separation prior to MS/MS analysis  相似文献   

19.
Guanine-rich DNA sequences commonly form helical quadruplex structures via Hoogsteen hydrogen bonds. The aggregation behavior of the nanoparticles, which are functionalized with four-guanine-terminated 27-base sequences at a nanoparticle-to-DNA ratio of 1:60, is investigated. To some extent, the guanine-quadruplex structures between the gold nanoparticles (GNPs) promote nanoparticle aggregation. However, the coordination site of the metal ion on the nanoparticle surface is partially passivated: the stability of guanine-rich DNA-GNPs is slightly lower than that of the usual DNA-GNPs, and the metal-ion specificity of nanoparticle assembly is substantially decreased. Thus, a mechanism for the aggregation of guanine-rich sequence-modified GNPs is proposed. It is possible to obtain a stable guanine-rich sequence-functionalized nanoparticle solution at high ionic strength by regulating guanine-rich DNA sequences. The controllability of guanine-rich sequence-modified nanoparticles makes the secondary structure of DNA a potentially useful candidate for DNA analysis and disease diagnostics. Figure Proposed mechanism for the aggregation of G-rich sequence-functionalized GNP Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

20.
A screen-printed (SP) microarray is presented as a platform for the achievement of multiparametric biochips. The SP platform is composed of eight (0.28-mm2) working electrodes modified with electroaddressed protein A-aryl diazonium adducts. The electrode surfaces are then used as an affinity immobilisation support for the orientated binding of capture monoclonal antibodies, having specificity against four different point-of-care related proteins (myoglobin, cardiac troponin I, C-reactive protein and brain natriuretic peptide). The immobilised capture antibodies are involved in sandwich assays of the four proteins together with biotinylated detection antibodies and peroxidase-labelled streptavidin in order to permit a chemiluminescent imaging of the SP platform and a sensitive detection of the assayed proteins. The performances of the system in pure buffered solutions, using a 25-min assay duration, were characterised by dynamic ranges of 0.5–50, 0.1–120, 0.2–20 and 0.67–67 μg/L for C-reactive protein, myoglobin, cardiac troponin I and brain natriuretic peptide, respectively. The four different assays were also validated in spiked 40-times-diluted human sera, using LowCross buffer, and were shown to work simultaneously in this complex medium. Figure Principle of the screen-printed POC microarray and a schematic representation of the assay architecture. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号