首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

2.
The perturbation method of Lindstedt is applied to study the non linear effect of a nonlinear equation $$\nabla ^2 {\rm E} - \frac{1}{{c^2 }}\frac{{\partial ^2 {\rm E}}}{{\partial t^2 }} - \frac{{\omega _0^2 }}{{c^2 }}{\rm E} + \frac{{2v}}{{c^2 }}\frac{{\partial {\rm E}}}{{\partial t}} + E^2 \left[ {\frac{{\partial {\rm E}}}{{\partial t}} \times A} \right] = 0,$$ where (A. E)=0 andA,c, ω 0 andν are constants in space and time. Amplitude dependent frequency shifts and the solution up to third order are derived.  相似文献   

3.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

4.
The incompressible limit in nonlinear elasticity is shown to fall under the theory of singular limits of quasilinear symmetric hyperbolic systems developed by Klainerman and Majda. Specifically, initial-value problems for a family of hyperelastic materials with stored energy functions $$W\left( {\frac{{\partial x}}{{\partial X}}} \right) = W_\infty \left( {\frac{{\partial x}}{{\partial X}}} \right) + \lambda ^2 w\left( {\det \frac{{\partial x}}{{\partial X}}} \right)$$ are considered, whereX andx are reference and deformed coordinates respectively. Under the assumption that the elasticity tensor $$A_{kl}^{ij} \equiv \frac{{\partial ^2 W_\infty }}{{\partial \left( {\frac{{\partial x^i }}{{\partial X^k }}} \right)\partial \left( {\frac{{\partial x^j }}{{\partial X^l }}} \right)}}$$ is positive definite near the identity matrix and thatw″(1)>0, the following results are proven for appropriate initial data: i) existence of solutions of the corresponding evolution equations on a time interval independent of λ as λ→∞, and ii) convergence as λ → ∞ of the solutions to a solution of the incompressible elastodynamics equations.  相似文献   

5.
Exact solutions to Einstein's field equations, which give rise to a Stäckel-separable Hamilton-Jacobi equation of the form $$,y,z)\left[ {X(x)\left( {\frac{{\partial S}}{{\partial x}}} \right)^2 - 2\left( {\frac{{\partial S}}{{\partial x}}} \right)\left( {\frac{{\partial S}}{{\partial t}}} \right) - 2\left( {\frac{{\partial S}}{{\partial y}}} \right)\left( {\frac{{\partial S}}{{\partial t}}} \right) + Z(z)\left( {\frac{{\partial S}}{{\partial z}}} \right)^2 - 2\left( {\frac{{\partial S}}{{\partial z}}} \right)\left( {\frac{{\partial S}}{{\partial t}}} \right) - F(x,y,z)\left( {\frac{{\partial S}}{{\partial t}}} \right)^2 } \right] = \lambda $$ are considered. It is shown that there are no solutions for whichD is a function ofx orz, orx andz. The exact solutions are of Petrov typeN and are plane polarized waves without rotation. Some of the solutions are given explicitly, up to two arbitary functions. For these solutions the Hamilton-Jacobi equation is reduced to an uncoupled set of first-order ordinary differential equations.  相似文献   

6.
We prove that the solution to a pair of nonlinear integral equations arising in the thermodynamic Bethe Ansatz can be expressed in terms of the resolvent kernel of the linear integral operator with kernel $$\frac{{e^{ - (u(\theta ) + u(\theta \prime ))} }}{{\cosh ^{\frac{{\theta - \theta \prime }}{2}} }}$$ .  相似文献   

7.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

8.
The contribution to the sixth-order muon anomaly from second-order electron vacuum polarization is determined analytically to orderm e/m μ. The result, including the contributions from graphs containing proper and improper fourth-order electron vacuum polarization subgraphs, is $$\begin{gathered} \left( {\frac{\alpha }{\pi }} \right)^3 \left\{ {\frac{2}{9}\log ^2 } \right.\frac{{m_\mu }}{{m_e }} + \left[ {\frac{{31}}{{27}}} \right. + \frac{{\pi ^2 }}{9} - \frac{2}{3}\pi ^2 \log 2 \hfill \\ \left. { + \zeta \left( 3 \right)} \right]\log \frac{{m_\mu }}{{m_e }} + \left[ {\frac{{1075}}{{216}}} \right. - \frac{{25}}{{18}}\pi ^2 + \frac{{5\pi ^2 }}{3}\log 2 \hfill \\ \left. { - 3\zeta \left( 3 \right) + \frac{{11}}{{216}}\pi ^4 - \frac{2}{9}\pi ^2 \log ^2 2 - \frac{1}{9}log^4 2 - \frac{8}{3}a_4 } \right] \hfill \\ + \left[ {\frac{{3199}}{{1080}}\pi ^2 - \frac{{16}}{9}\pi ^2 \log 2 - \frac{{13}}{8}\pi ^3 } \right]\left. {\frac{{m_e }}{{m_\mu }}} \right\} \hfill \\ \end{gathered} $$ . To obtain the total sixth-order contribution toa μ?a e, one must add the light-by-light contribution to the above expression.  相似文献   

9.
In this paper we want to give a new definition of fractal dimensions as small scale behavior of theq-energy of wavelet transforms. This is a generalization of previous multi-fractal approaches. With this particular definition we will show that the 2-dimension (=correlation dimension) of the spectral measure determines the long time behavior of the time evolution generated by a bounded self-adjoint operator acting in some Hilbert space ?. It will be proved that for φ, ψ∈? we have $$\mathop {\lim \inf }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ + (2)$$ and that $$\mathop {\lim \sup }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ - (2),$$ wherek ±(2) are the upper and lower correlation dimensions of the spectral measure associated with ψ and ?. A quantitative version of the RAGE theorem shall also be given.  相似文献   

10.
The problem of thermal-field ionization of deep impurity centers in semiconductors is studied. It is shown that \(W_{ion} = W_0 e^{\alpha F^2 }\) , where F is the electric field strength. Also, the lifetime for multiphonon nonradiative capture is calculated as a function of F. It is shown that the relative change in lifetime is $$\frac{{\Delta \tau }}{{\tau ^0 }} = \frac{{\tau ---\tau _0 }}{{\tau _0 }} \approx - \alpha F^2 .$$   相似文献   

11.
This work deals with relativistic Boltzmann equation and more particulary with integral operator of complete equation and integral operator of linearized equation. These operators depend on the differential cross sectionh(〈p, q〉, cos θ) which is a fonction of energy 〈p, q〉 and of the deviation angle θ. The only hypothesis is thath is a symetric function of cosθ. The second part deals essentially with linearized equation in Special Relativity. We take for the distribution function: $$F\left( {x,p} \right) = a e^{ - \frac{{\lambda p}}{2}} \left( {e^{ - \frac{{\lambda p}}{2}} + \varepsilon f\left( {x,p} \right)} \right)$$ wherea is a constant, λ a constant vector and ? a small constant so that ?2 can be neglected. We obtain the equation: $$\frac{{p^\alpha }}{{p^0 }}\frac{{\partial f}}{{\partial x^\alpha }} = - K\left( p \right) \cdot f + G\left( f \right)$$ whereK(p) is a positive function andG an Hilbert-Schmidt operator. Then we resolve the Cauchy's problem by taking the Fourier's transformation off, and in the last part by investigating properties of the resolvent of ?K+G we establish that asx 0→+∞ the solution of this problem has for limit the equilibrium distributiona e p .  相似文献   

12.
TheL-subshell conversion for 77 keV transition andK,L 1,L 2-shell conversion for 191 keV transition in197Au, as well asK-shell conversion transition of 158 keV in199Hg were measured by means of Π√2-iron free electron spectrometer. Relative gamma-ray intensities have been determined by Ge(Li) spectrometer. From these measurements the α K conversion coefficient value has been deduced for 191 keV transition as αK(191 keV)=0.86±0.03. This value shows that the spin of the level at 268 keV in197Au is 3/2+. For the penetration parameter (λ) and intensity ratio \(\left( {\delta ^2 = \frac{{\left\langle {E2} \right\rangle ^2 }}{{\left\langle {MI} \right\rangle ^2 }}} \right)\) the following values are obtained: $$\begin{gathered} \lambda = 3.4 \pm _{1.5}^{1.9} \delta ^2 = 0.11 \pm 0.03for 77 keV transition \hfill \\ \lambda = 3.2 \pm _{0.6}^{0.8} \delta ^2 = 0.17 \pm 0.04for 191 keV transition. \hfill \\ \end{gathered} $$ The agreement of these results with the predictions of De Shalit model is discussed.  相似文献   

13.
It is supposed that the effective Lagrangian of interaction of a magnetic field with a neutrino can be written in the form $$L_{eff} = \frac{{G_{\mathbf{\gamma }} }}{{m_W^2 }} \frac{{\partial ^2 A^\mu }}{{\partial x^v \partial x_v }}[\bar \Psi _v {\mathbf{\gamma }}_\mu (1 + {\mathbf{\gamma }}^5 )\Psi _v ].$$ Formulas are obtained for the emission of neutrinos by alternating fields. In particular, neutrino synchrotron emission and neutrino emission in the case of collision of two classical charges are considered. Arguments are presented that this mechanism can make a contribution to the neutrino luminosity of stars.  相似文献   

14.
15.
This paper is concerned with the Lévy, or stable distribution function defined by the Fourier transform $$Q_\alpha \left( z \right) = \frac{1}{{2\pi }}\int {_{ - \infty }^\infty \exp \left( { - izu - \left| u \right|^\alpha } \right)du} with 0< \alpha \leqslant 2$$ Whenα=2 it becomes the Gauss distribution function and whenα=1, the Cauchy distribution. Whenα≠2 the distribution has a long inverse power tail $$Q_\alpha \left( z \right) \sim \frac{{\Gamma \left( {1 + \alpha } \right)\sin \tfrac{1}{2}\pi \alpha }}{{\pi \left| z \right|^{1 + \alpha } }}$$ In the regime of smallα, ifα¦logz¦?1, the distribution is mimicked by a log normal distribution. We have derived rapidly converging algorithms for the numerical calculation ofQ α (z) for variousα in the range 0<α<1. The functionQ α (z) appears naturally in the Williams-Watts model of dielectric relaxation. In that model one expresses the normalized dielectric parameter as $$ \in _n \left( \omega \right) \equiv \in '_n \left( \omega \right) - i \in ''_n \left( \omega \right) = - \int {_0^\infty e^{ - i\omega t} \left[ {{{d\phi \left( t \right)} \mathord{\left/ {\vphantom {{d\phi \left( t \right)} {dt}}} \right. \kern-\nulldelimiterspace} {dt}}} \right]} dt$$ with $$\phi \left( t \right) = \exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha $$ It has been found empirically by various authors that observed dielectric parameters of a wide variety of materials of a broad range of frequencies are fitted remarkably accurately by using this form ofφ(t).ε n (ω) is shown to be directly related toQ α (z). It is also shown that if the Williams-Watts exponential is expressed as a weighted average of exponential relaxation functions $$\exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha = \int {_0^\infty } g\left( {\lambda , \alpha } \right)e^{ - \lambda t} dt$$ the weight functiong(λ, α) is expressible as a stable distribution. Some suggestions are made about physical models that might lead to the Williams-Watts form ofφ(t).  相似文献   

16.
The Boltzmann equation for electrons in a semiconductor is assumed to be of the form $$\frac{{\partial f}}{{\partial t}} + F \cdot \frac{{\partial f}}{{\partial k}} = \frac{{h - f}}{{\tau _0 }} + \frac{1}{{\tau \left( k \right)}} \cdot \frac{1}{{4\pi }}\int {d\Omega 'w\left( \theta \right)\left( {f\left( {k,\vartheta '} \right) - f\left( {k,\vartheta '} \right)} \right)} $$ whereh is the Maxwell-Boltzmann distribution. The energy surface structure of the lattice electronsE(k) is assumed to be spheric. The stationary solutions for strong electric fields show a concentration of electrons into the field direction (field orientation), if the elastic collision frequency is not too large. This means, at least for large energies, that nearly all electrons are in a cone with small aperture around the field direction. Every transport problem whose collision operator can be reduced to the upper form at least for large energies, can be solved by a perturbation method whose zeroth order is the ideal field orientation. The conditions for a field orientation of the electron distribution to exist will be investigated.  相似文献   

17.
OL-1-type material (birnessite) is synthesized by an oxidoreduction process. Different physicochemical techniques were used to characterize the obtained material. AC impedance spectroscopy results show processes associated to the electrical conduction in bulk and grain boundary at high frequency, and an ionic conduction at low frequency. Here σ′(ω) shows a universal Jonscher’s law behavior associated to the electron hopping and charge polarization, and the value of 8.39?×?10?6 Ω?1?cm?1 found in the high frequency region at room temperature suggests its semiconductor nature. The combined results of AOS, TGA, and AA suggest the following chemical formula $ {\text{N}}{{\text{a}}^{ + }}_{{0.28}}\left( {{\text{M}}{{\text{g}}^{{2 + }}}_{{0.16}}{\text{M}}{{\text{n}}^{{4 + }}}_{{0.46}}{\text{M}}{{\text{n}}^{{3 + }}}_{{0.54}}} \right){{\text{O}}_{{2.03}}} \cdot 0.6{{\text{H}}_2}{\text{O}} $ . Finally, the XRD pattern is characteristic of OL-1-type materials, the BET area was 56,25 m2 g?1, and the behavior of N2 isotherms suggests the presence of microporous and mesoporous structures. With the purpose of obtaining a better understanding of the ionic conductivity in these types of materials, magnesium exchange material was prepared and electrical properties at room temperature were analyzed. These results indicate that there is interplay among the structural, morphological, and textural properties with the electrical performance of these materials.  相似文献   

18.
Let $$\begin{gathered} u^* = u + \in \eta (x,{\text{ }}t,{\text{ }}u), \hfill \\ \hfill \\ \hfill \\ x^* = x + \in \xi (x, t, u{\text{),}} \hfill \\ \hfill \\ \hfill \\ {\text{t}}^{\text{*}} = {\text{ }}t + \in \tau {\text{(}}x,{\text{ }}t,{\text{ }}u), \hfill \\ \end{gathered}$$ be an infinitesimal invariant transformation of the evolution equation u t =H(x,t,u,?u/?x,...,? n :u/?x n . In this paper we give an explicit expression for \(\eta ^{X^i }\) in the ‘determining equation’ $$\eta ^T = \sum\limits_{i = 1}^n {{\text{ }}\eta ^{X^i } {\text{ }}\frac{{\partial H}}{{\partial u_i }} + \eta \frac{{\partial H}}{{\partial u_{} }} + \xi \frac{{\partial H}}{{\partial x}} + \tau } \frac{{\partial H}}{{\partial t}},$$ where u i =? i u/?x i . By using this expression we derive a set of equations with η, ξ, τ as unknown functions and discuss in detail the cases of heat and KdV equations.  相似文献   

19.
Previous works have been made on the improvement of selectivity of ion exchange membranes using adsorption of polyelectrolyte on the surface of the materials. The modification of the surface material in the case of an anion exchange membrane concerns the hydrophilic/hydrophobic balance properties and its relationship with the hydration state. Starting from this goal, the AMX membrane has been modified, in this work, by adsorption of polyethyleneimine on its surface. Many conditions of modification of the AMX membrane surface were studied. A factorial experimental design was used for determining the influent parameters on the AMX membrane modification. The results obtained have shown that the initial concentration of polyethyleneimine and the pH of solution were the main influent parameters on the adsorption of polyethyleneimine on the membrane surface. Competitive ion exchange reactions were studied for the modified and the unmodified membrane involving $ {\text{C}}{{\text{l}}^{ - }} $ , $ {\text{NO}}_3^{ - } $ and $ {\text{SO}}_4^{{2 - }} $ ions. All experiments were carried out at constant concentration of 0.3?mol?L?1 and at 25?°C. Ion exchange isotherms for the binary systems $ \left( {{\text{C}}{{\text{l}}^{ - }}/{\text{NO}}_3^{ - }} \right) $ , $ \left( {{\text{C}}{{\text{l}}^{ - }}/{\text{SO}}_4^{{2 - }}} \right) $ and $ \left( {{\text{NO}}_3^{ - }/{\text{SO}}_4^{{2 - }}} \right) $ were studied. The obtained results show that chloride was the most sorbed and the selectivity order both for the modified membrane and the unmodified one is: $ {\text{Cl}} > {\text{NO}}_3^{ - } > {\text{SO}}_4^{{2 - }} $ , under the experimental conditions. Selectivity coefficients $ {\text{K}}_{{{\text{C}}{{\text{l}}^{ - }}}}^{{{\text{NO}}_3^{ - }}} $ , $ {\text{K}}_{{2{\text{C}}{{\text{l}}^{ - }}}}^{{{\text{SO}}_4^{{2 - }}}} $ and $ {\text{K}}_{{2{\text{NO}}_3^{ - }}}^{{{\text{SO}}_4^{{2 - }}}} $ for the three binary systems and for the two membranes were determined. It was also observed that for the modified membrane the selectivity towards sulfate ion decrease and the modified membrane became more selective towards monovalent anions.  相似文献   

20.
We show how to prove and to understand the formula for the “Pontryagin” indexP for SU(N) gauge fields on the HypertorusT 4, seen as a four-dimensional euclidean box with twisted boundary conditions. These twists are defined as gauge invariant integers moduloN and labelled byN μv (=?N μv ). In terms of these we can write (ν∈#x2124;) $$P = \frac{1}{{16\pi ^2 }}\int {Tr(G_{\mu v} \tilde G_{\mu v} )d_4 x = v + \left( {\frac{{N - 1}}{N}} \right) \cdot \frac{{n_{\mu v} \tilde n_{\mu v} }}{4}} $$ . Furthermore we settle the last link in the proof of the existence of zero action solutions with all possible twists satisfying \(\frac{{n_{\mu v} \tilde n_{\mu v} }}{4} = \kappa (n) = 0(\bmod N)\) for arbitraryN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号