首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Femtosecond (fs) laser pulses at variable delay times allowed us to track the fast non-radiative transitions between the manifold of highly excited $\mathrm{M}_{\mathrm{Na}}^{**}$ states to the lower lying fluorescent $\mathrm{M}_{\mathrm{Na}}^{*}$ state in CaF2. Two distinct $\mathrm{M}_{\mathrm{Na}}^{**}$ states of the manifold at 3.16?eV ( $\mathrm{M}_{\mathrm{Na}2}^{**}$ ) and 4.73?eV ( $\mathrm{M}_{\mathrm{Na}3}^{**}$ ) were populated using the second (SH) and third harmonics (TH) of fs laser light at 785?nm. The population kinetics of the fluorescent $\mathrm{M}_{\mathrm{Na}}^{*}$ state in the 2?eV excitation energy range was revealed by depleting its fluorescence centered at 740?nm using fundamental near infrared (NIR) fs laser pulses. The related time constants for $\mathrm{M}_{\mathrm{Na}2,3}^{**}{\sim}{>} \mathrm{M}_{\mathrm{Na}}^{*}$ relaxation amounted to 1.0±0.14?ps and 3.0±0.3?ps upon SH and TH excitation, respectively.  相似文献   

2.
We present PHENIX recent results on charged particle and transverse energy densities measured at mid-rapidity in Au?Au collisions at $\sqrt {s_{NN} } = 130$ GeV and 200 GeV over a broad range of centralities. The mean transverse energy per charged particle is derived. The first PHENIX measurements at $\sqrt {s_{NN} } = 19.6$ GeV are also presented. A comparison with calculations from various theoretical models is performed.  相似文献   

3.
We present measurement of elliptic flow, v 2, for charged and identified particles at midrapidity in Au+Au collisions at $\sqrt {s_{NN} } $ = 7.7?C39 GeV. We compare the inclusive charged hadron v 2 to those from transport model calculations, such as the UrQMD model, AMPT default model and AMPT string-melting model. We discuss the energy dependence of the difference in v 2 between particles and anti-particles. The v 2 of ? meson is observed to be systematically lower than other particles in Au+Au collisions at $\sqrt {s_{NN} } $ = 11.5 GeV.  相似文献   

4.
The band alignments of high-k Er2O3 films grown on Ge substrates by molecular beam epitaxy are determined by X-ray photoelectron spectroscopy. The valence-band and the conduction-band offsets of Er2O3 to Ge are found to be $3.16\pm0.02$ and $2.13\pm0.02\ \mbox{eV}$ , respectively. The energy gap of Er2O3 is $5.96\pm0.02\ \mbox{eV}$ as determined by the optical spectrophotometry. From the band offset viewpoint, the above results indicate that Er2O3 could be a promising candidate for high-k gate dielectrics on Ge substrate.  相似文献   

5.
Ultra-relativistic heavy-ion collisions produced at RHIC differ significantly from a superposition of proton-proton collisions. Evidence of collective expansion has been gathered. The yield of high transverse momentum particles has been found to be lower in head-on Au?Au collisions than is expected by scaling p-p collisions. Di-jet processes, which are frequent in p-p collisions, are almost absent in head-on Au?Au collisions. The current results from RHIC indicate that Au?Au collisions at $\sqrt {S_{NN} } = 130$ GeV and $\sqrt {S_{NN} } = 200$ GeV yield an expanding system that is opaque to high momentum partons.  相似文献   

6.
We prove a regularity result in weighted Sobolev (or Babu?ka?CKondratiev) spaces for the eigenfunctions of certain Schr?dinger-type operators. Our results apply, in particular, to a non-relativistic Schr?dinger operator of an N-electron atom in the fixed nucleus approximation. More precisely, let ${\mathcal{K}_{a}^{m}(\mathbb{R}^{3N},r_S)}$ be the weighted Sobolev space obtained by blowing up the set of singular points of the potential ${V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}}$ , ${x \in \mathbb{R}^{3N}}$ , ${b_j, c_{ij} \in \mathbb{R}}$ . If ${u \in L^2(\mathbb{R}^{3N})}$ satisfies ${(-\Delta + V) u = \lambda u}$ in distribution sense, then ${u \in \mathcal{K}_{a}^{m}}$ for all ${m \in \mathbb{Z}_+}$ and all a ?? 0. Our result extends to the case when b j and c ij are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a?<?3/2.  相似文献   

7.
Preliminary results from measurements of resonances (K *0(892), $\overline {K*^0 } (892)$ , Φ(1020), and ρ(770)) and weakly decaying particles (Λ(1116), $\bar \Lambda (1116)$ , and K S 0 (498)) are presented. The measurements are performed at mid-rapidity by the STAR detector in $\sqrt {s_{NN} } = 130$ GeV Au?Au collisions at RHIC. The ratios K *0/h?, $\overline {K*^0 } /K$ , and $\bar \Lambda /\Lambda $ are compared to measurements at different energies and colliding systems. Estimates of thermal parameters, such as temperature and baryon chemical potential, are also presented.  相似文献   

8.
Inclusive spectra of charged particles at midrapidity in Au+Au collisions at $\sqrt {s_{NN} } = 130$ GeV and 200 GeV were measured with the STAR detector at RHIC. The measured mean transverse momentum 〈p T 〉 shows a characteristic dependence on charged particle multiplicity and beam energy in Au+Au collisions that is distinctly different from pp, $p\bar p$ and e+e? collisions. A 32%±3%(syst) increase in 〈p T 〉 from pp to Au+Au collisions was observed at 200 GeV. While the charged multiplicity was found to increase by 19%±5%(syst) from $\sqrt {s_{NN} } = 130$ GeV to 200 GeV, no significant difference in 〈p T 〉 was found between the two energies. A comparison with model predictions is discussed.  相似文献   

9.
We report on the p T dependence of nuclear modification factors (R CP) for K S 0 , ??, ?? and the $\bar NK_S^0 $ ratios at mid-rapidity from Au+Au collisions at $\sqrt {s_{NN} } $ = 39, 11.5 and 7.7 GeV. At $\sqrt {s_{NN} } $ = 39 GeV, the R CP data show a baryon/meson separation at intermediate p T and a suppression for K S 0 for p T up to 4.5 GeV/c; the $\bar \Lambda K_S^0 $ shows baryon enhancement in the most central collisions. However, at $\sqrt {s_{NN} } $ = 11.5 and 7.7 GeV, R CP shows less baryon/meson separation and $\bar NK_S^0 $ shows almost no baryon enhancement. These observations indicate that the matter created in Au+Au collisions at $\sqrt {s_{NN} } $ = 11.5 or 7.7 GeV might be distinct from that created at $\sqrt {s_{NN} } $ = 39 GeV.  相似文献   

10.
A semi-empirical potential according to the embedded atom, has been applied to investigate the diffusion of trimers by computing the energy barriers for different mechanisms. Our attention was more focused on the leapfrog process which is likely to occur on missing row surfaces. The activation barriers of this mechanism are calculated using drag method at 0K. These barriers are found to be 0.64 and 0.68 eV for hopping out the channel for $\mathrm{Cu }_{3}/\mathrm{Ag }(110) \mathrm{and Ag }_{3}/\mathrm{Cu }$ (110) respectively. While for hopping down at the other side they are about 0.42 and 0.32 eV. Moreover, a deep metastable position is observed during leapfrog diffusion leading to some spectacular trimer motion. At high temperature and essentially for $\mathrm{Cu }_{3}/\mathrm{Ag }$ (110), we also observed a competition between leapfrog process and concerted jump mechanism with a deformation of trimer geometry. Implications of these findings are briefly discussed.  相似文献   

11.
There is good agreement between the neutrino mass square difference determined from the solar neutrino and anti-neutrino mass square difference from the KamLAND reactor antineutrino. We consider as special case of matter density profile, which are relevant for neutrino oscillation physics. In particular, we compute to constrain a specific from of CPT violation in matter by upper bound, $|\varDelta_{21}^{m}-\overline{\varDelta_{21}^{m}}| \ll 1.098\times10^{-4}~\mathrm{eV}^{2}$ and $|\sin2\theta_{12}^{m}-\sin2\bar{\theta}_{12}^{m}|<0.0057$ . In this paper, we discuss CPT violation on neutrino oscillation in matter. The dispersion relation for the CPT violation in neutrino oscillation in matter are discussed.  相似文献   

12.
The theoretical calculations indicated that the monoclinic low-temperature phase of silver telluride $(\upbeta \hbox {-Ag}_{2}\hbox {Te})$ is a new binary topological insulator with highly anisotropic single Dirac cone surface. We obtained $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ crystal ingots containing few grains by the Bridgman method. We also deposited thin films of tellurium, $\hbox {Ag}_{5}\hbox {Te}_{3}\hbox { and }(\hbox {Te+Ag}_{5}\hbox {Te}_{3})$ by thermal evaporation method. The Raman spectra of $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ , tellurium and $\hbox {Ag}_{5}\hbox {Te}_{3}$ were measured at three excitation wave lengths: 633, 515 and 488 nm. The Raman active modes of $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ , tellurium and $\hbox {Ag}_{5}\hbox {Te}_{3}$ are situated at frequencies below 300  $\hbox {cm}^{-1}$ while vibrations of other phases appear at higher frequencies.  相似文献   

13.
The general theory of inhomogeneous mean-field systems of Raggio and Werner provides a variational expression for the (almost sure) limiting free energy density of the Hopfield model $$H_{N,p}^{\{ \xi \} } (S) = - \frac{1}{{2N}}\sum\limits_{i,j = 1}^N {\sum\limits_{\mu = 1}^N {\xi _i^\mu \xi _j^\mu S_i S_j } } $$ for Ising spinsS i andp random patterns ξμ=(ξ 1 μ 2 μ ,...,ξ N μ ) under the assumption that $$\mathop {\lim }\limits_{N \to \gamma } N^{ - 1} \sum\limits_{i = 1}^N {\delta _{\xi _i } = \lambda ,} \xi _i = (\xi _i^1 ,\xi _i^2 ,...,\xi _i^p )$$ exists (almost surely) in the space of probability measures overp copies of {?1, 1}. Including an “external field” term ?ξ μ p hμμξ i=1 N ξ i μ Si, we give a number of general properties of the free-energy density and compute it for (a)p=2 in general and (b)p arbitrary when λ is uniform and at most the two componentsh μ1 andh μ2 are nonzero, obtaining the (almost sure) formula $$f(\beta ,h) = \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } + h^{\mu _2 } ) + \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } - h^{\mu _2 } )$$ for the free energy, wheref cw denotes the limiting free energy density of the Curie-Weiss model with unit interaction constant. In both cases, we obtain explicit formulas for the limiting (almost sure) values of the so-called overlap parameters $$m_N^\mu (\beta ,h) = N^{ - 1} \sum\limits_{i = 1}^N {\xi _i^\mu \left\langle {S_i } \right\rangle } $$ in terms of the Curie-Weiss magnetizations. For the general i.i.d. case with Prob {ξ i μ =±1}=(1/2)±?, we obtain the lower bound 1+4?2(p?1) for the temperatureT c separating the trivial free regime where the overlap vector is zero from the nontrivial regime where it is nonzero. This lower bound is exact forp=2, or ε=0, or ε=±1/2. Forp=2 we identify an intermediate temperature region between T*=1?4?2 and Tc=1+4?2 where the overlap vector is homogeneous (i.e., all its components are equal) and nonzero.T * marks the transition to the nonhomogeneous regime where the components of the overlap vector are distinct. We conjecture that the homogeneous nonzero regime exists forp≥3 and that T*=max{1?4?2(p?1),0}.  相似文献   

14.
A full ligand-field energy matrix diagonalization treatment for 3d 1 ions in tetragonal symmetry is developed on the basis of the two spin?Corbit coupling parameter model, and the contributions of the spin?Corbit coupling of the ligand ions to the optical and electron paramagnetic resonance spectra are included. Spin Hamiltonian parameters of the tetragonal ${\rm V}^{4+}$ center in $\hbox{K}_2\hbox{SO}_4 {-} \hbox{Na}_2\hbox{SO}_4{-}\hbox{ZnSO}_4$ glass are calculated from the complete energy matrix diagonalization and the perturbation theory methods. The results calculated by both methods are not only close to each other but also in good agreement with the experimental values. Furthermore, the compressed defect structure of the ${\rm (VO_6)^{8-}}$ cluster is discussed.  相似文献   

15.
The balance function is based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for all charged pairs, identified pion pairs, and identified charged kaon pairs in Au+Au collisions at $\sqrt {s_{NN} } = 200$ GeV and p+p collisions at $\sqrt {s_{NN} } = 200$ GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for all charged particles from Au+Au scale smoothly with centrality to the p+p value. Balance functions for charged particles and pions are narrower in central collisions than in peripheral collisions consistent with trends predicted by models incorporating the concept of late hadronization. Balance functions for kaon pairs represent a strangeness balance. Balance functions for kaons are narrower than those for pion pairs and may show less dependence on centrality.  相似文献   

16.
We study subadditive functions of the random parking model previously analyzed by the second author. In particular, we consider local functions S of subsets of ${\mathbb{R}^d}$ and of point sets that are (almost) subadditive in their first variable. Denoting by ξ the random parking measure in ${\mathbb{R}^d}$ , and by ξ R the random parking measure in the cube Q R =  (?R, R) d , we show, under some natural assumptions on S, that there exists a constant ${\overline{S} \in \mathbb{R}}$ such that $$\lim_{R \to +\infty} \frac{S(Q_R, \xi)}{|Q_R|} \, = \, \lim_{R \to +\infty} \frac{S(Q_R, \xi^{R})}{|Q_R|} \, = \, \overline{S}$$ almost surely. If ${\zeta \mapsto S(Q_R, \zeta)}$ is the counting measure of ${\zeta}$ in Q R , then we retrieve the result by the second author on the existence of the jamming limit. The present work generalizes this result to a wide class of (almost) subadditive functions. In particular, classical Euclidean optimization problems as well as the discrete model for rubber previously studied by Alicandro, Cicalese, and the first author enter this class of functions. In the case of rubber elasticity, this yields an approximation result for the continuous energy density associated with the discrete model at the thermodynamic limit, as well as a generalization to stochastic networks generated on bounded sets.  相似文献   

17.
In this paper we study soliton-like solutions of the variable coefficients, the subcritical gKdV equation $$u_t + (u_{xx} -\lambda u + a(\varepsilon x) u^m )_x =0,\quad {\rm in} \quad \mathbb{R}_t\times\mathbb{R}_x, \quad m=2,3\,\, { \rm and }\,\, 4,$$ with ${\lambda\geq 0, a(\cdot ) \in (1,2)}$ a strictly increasing, positive and asymptotically flat potential, and ${\varepsilon}$ small enough. In previous works (Mu?oz in Anal PDE 4:573?C638, 2011; On the soliton dynamics under slowly varying medium for generalized KdV equations: refraction vs. reflection, SIAM J. Math. Anal. 44(1):1?C60, 2012) the existence of a pure, global in time, soliton u(t) of the above equation was proved, satisfying $$\lim_{t\to -\infty}\|u(t) - Q_1(\cdot -(1-\lambda)t) \|_{H^1(\mathbb{R})} =0,\quad 0\leq \lambda<1,$$ provided ${\varepsilon}$ is small enough. Here R(t, x) := Q c (x ? (c ? ??)t) is the soliton of R t +? (R xx ??? R + R m ) x =?0. In addition, there exists ${\tilde \lambda \in (0,1)}$ such that, for all 0?<??? <?1 with ${\lambda\neq \tilde \lambda}$ , the solution u(t) satisfies $$\sup_{t\gg \frac{1}{\varepsilon}}\|u(t) - \kappa(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}\lesssim \varepsilon^{1/2}.$$ Here ${{\rho'(t) \sim (c_\infty(\lambda) -\lambda)}}$ , with ${{\kappa(\lambda)=2^{-1/(m-1)}}}$ and ${{c_\infty(\lambda)>\lambda}}$ in the case ${0<\lambda<\tilde\lambda}$ (refraction), and ${\kappa(\lambda) =1}$ and c ??(??)?<??? in the case ${\tilde \lambda<\lambda<1}$ (reflection). In this paper we improve our preceding results by proving that the soliton is far from being pure as t ?? +???. Indeed, we give a lower bound on the defect induced by the potential a(·), for all ${{0<\lambda<1, \lambda\neq \tilde \lambda}}$ . More precisely, one has $$\liminf_{t\to +\infty}\| u(t) - \kappa_m(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}>rsim \varepsilon^{1 +\delta},$$ for any ${{\delta>0}}$ fixed. This bound clarifies the existence of a dispersive tail and the difference with the standard solitons of the constant coefficients, gKdV equation.  相似文献   

18.
When the $\bar{K}N$ system is submerged in nuclear medium the $\bar{K}N$ scattering amplitude and the final state branching ratios exhibit a strong energy dependence when going to energies below the $\bar{K}N$ threshold. A sharp increase of $\bar{K}N$ attraction below the $\bar{K}N$ threshold provides a link between shallow $\bar{K}$ -nuclear potentials based on the chiral $\bar{K}N$ amplitude evaluated at threshold and the deep phenomenological optical potentials obtained in fits to kaonic atoms data. We show the energy dependence of the in-medium K ??? p amplitude and demonstrate the impact of energy dependent branching ratios on the Λ-hypernuclear production rates.  相似文献   

19.
H. Nemura 《Few-Body Systems》2011,50(1-4):105-112
Recent studies of nuclear forces based on lattice QCD are presented. Not only the central potential but also the tensor potential is deduced from the Nambu?CBethe?CSalpeter wave function measured with lattice QCD. This method is applied to various kinds of nuclear potentials, such as ${V_{NN}, V_{\Lambda N}, V_{p{\Xi}^0},V_{\Lambda\Lambda-N\Xi-\Sigma\Sigma}}$ (coupled-channel potential), and ${V^{\{{\bf {27},{8}_s,{1},{10},\overline{10},{8}_a}\}}}$ (flavor representation potential). The energy dependence and the angular momentum dependence of the quenched V NN is studied. A challenge for three-nucleon force from lattice QCD is also presented.  相似文献   

20.
WE consider a one-dimensional random Ising model with Hamiltonian $$H = \sum\limits_{i\ddag j} {\frac{{J_{ij} }}{{\left| {i - j} \right|^{1 + \varepsilon } }}S_i S_j } + h\sum\limits_i {S_i } $$ , where ε>0 andJ ij are independent, identically distributed random variables with distributiondF(x) such that i) $$\int {xdF\left( x \right) = 0} $$ , ii) $$\int {e^{tx} dF\left( x \right)< \infty \forall t \in \mathbb{R}} $$ . We construct a cluster expansion for the free energy and the Gibbs expectations of local observables. This expansion is convergent almost surely at every temperature. In this way we obtain that the free energy and the Gibbs expectations of local observables areC functions of the temperature and of the magnetic fieldh. Moreover we can estimate the decay of truncated correlation functions. In particular for every ε′>0 there exists a random variablec(ω)m, finite almost everywhere, such that $$\left| {\left\langle {s_0 s_j } \right\rangle _H - \left\langle {s_0 } \right\rangle _H \left\langle {s_j } \right\rangle _H } \right| \leqq \frac{{c\left( \omega \right)}}{{\left| j \right|^{1 + \varepsilon - \varepsilon '} }}$$ , where 〈 〉 H denotes the Gibbs average with respect to the HamiltonianH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号