首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perturbed angular correlation spectroscopy has been used to investigate the combined magnetic and electric hyperfine interaction of the probe nucleus 111Cd in ferromagnetically ordered rare earth (R)-dialuminides RAl2 as a function of temperature for the rare earth constituents R=Pr, Nd, Sm, Eu, Tb, Dy, Ho and Er. In compounds with two magnetically non-equivalent Al sites (R=Sm, Tb, Ho, Er), the magnetic hyperfine field was found to be strongly anisotropic. This anisotropy is much greater than the anisotropic dipolar fields, suggesting a contribution of the anisotropic 4f-electron density to magnetic hyperfine field at the closed-shell probe nucleus. The spin dependence of the magnetic hyperfine field reflects a decrease of the effective exchange parameter of the indirect coupling with increasing R atomic number. For the compounds with the R constituents R=Pr, Nd, Tb, Dy and Ho the parameters B4, B6 of the interaction of the crystal field interaction have been determined from the temperature dependence of the magnetic hyperfine field. The 111Cd PAC spectrum of EuAl2 at 9 K confirms the antiferromagnetic structure of this compound.  相似文献   

2.
The time differential perturbed angular correlation technique has been used to study the combined magnetic and electric hyperfine interactions at the site of a111Cd impurity in the rare earth ferromagnets Gd, Tb, Dy, Ho, Er, and Tm at 4.2 °K. The following magnetic hyperfine fields at the site of111Cd have been found: ¦H hf ¦=340(7) kG in Gd, 275 (5) kG in Tb, 221 (4) kG in Dy, 116 (3) kG in Er and 60 (6) kG in Tm. In Ho two magnetically different sites were observed with magnetic fields of 159 (3) and 139 (3) kG. Both sites are equally populated. The coupling constantJ 5f of the conduction electron-4f interaction has been calculated for the different rare earth metals from the measured hyperfine fields by means of the RKKY theory.  相似文献   

3.
The combined magnetic and electric hyperfine interaction at the site of a111Cd impurity in magnetically ordered Dysprosium has been investigated as a function of temperature by time differential perturbed angular correlation measurements. Three different phases have been found in metallic Dy with transition temperatures of 85 and 179 °K in agreement with the results of bulk material measurements. In the paramagnetic phase above 179 °K a pure electric quadrupole interaction has been observed. The various contributions to the electric fieldgradient are analyzed and it is shown, that the dominant contribution comes from the conduction electrons. In the ferromagnetic phase which extends from 0 to 85 °K the magnetic hyperfine field at the site of111Cd has the same temperature dependence as the spontaneous magnetization. The value of the hyperfine field at 4.2 °K is ¦H eff¦=(221 ± 4) kG. At 85 °K a transition to the antiferromagnetic phase of Dy occurs, which shows a hysteresis of the transition temperature. In the antiferromagnetic phase the temperature dependence of the hyperfine field deviates considerably from the magnetization curve. It is suggested that this deviation might be due to a temperature dependence of thes-f exchange interaction.  相似文献   

4.
Nuclear magnetic resonance of175Hf oriented at low temperature in iron has been observed with a sample prepared by ion implantation. The centre frequency of the broad resonance line isv L (B ext = 0)=138.53(36)MHz. Possible origins of the large inhomogeneous line width of FWHM=11.0(1.1) MHz are discussed. A comparison with model calculations for combined magnetic and electric hyperfine interaction indicates that the centre frequency may be interpreted as the magnetic interaction frequency for175Hf in unperturbed substitutional sites of the host iron. With theg-factor of175Hf from literature the magnetic hyperfine field of Hf in Fe is derived asB hf=?64.9(9.3) T fitting well into systematics.  相似文献   

5.
The technique of differential γ-γ angular correlation measurements has been applied to an investigation of the hyperfine interactions in the 482 keV level of181Ta. The activity was embedded in the lattice of a hafnium single crystal. The investigation of the quadrupole interaction gave for the electric interaction frequencyω 0=(313±4) MHz. The electric field gradient was found to be axially symmetric, the asymmetry parameter beingη<0.1. Furthermore the combined collinear magnetic dipole and electric quadrupole interaction was studied. The angular correlation was investigated as a function of the strength of the external magnetic field by integral as well as time differential measurements. The integral anisotropy as function of the magnetic field has the shape of a resonance curve. The maximum was observed at a magnetic field ofB res=(24.2±0.5)kG.  相似文献   

6.
Magnetic and electric hyperfine interaction of the nuclear probe 111In/111Cd in intermetallic compounds of the rare earth-gallium system have been investigated by perturbed angular correlation (PAC) spectroscopy. The PAC measurements, supported by X-ray diffraction, provide evidence for a marked phase preference of 111In for hexagonal RGa2 over orthorhombic RGa and of RGa3 with the L12 structure over RGa2. In the case of SmGa2, the magnetic hyperfine field Bhf, the electric quadrupole interaction and the angle β between Bhf and the symmetry axis of the electric field gradient have been determined as a function of temperature. The angle β?=?0 is consistent with the results of previous magnetization studies. Up to T?≤?17 K the magnetic hyperfine field has a constant value of Bhf?=?3.0(2) T. The rapid decrease at higher T gives the impression of a first-order transition with an order temperature of TN?=?19.5 K. In the RKKY model of indirect 4f interaction the ratio TC/Bhf(0) is a measure of the coupling constant. For 111Cd:SmGa2 (TC/Bhf(0)~6.5 K/T) this ratio is significantly smaller than for the same probe in other R intermetallics (SmAl2 ~9.5 K/T, Sm2In ~13.5 K/T).  相似文献   

7.
Perturbed gamma-gamma angular correlation (PAC) technique was used to measure the hyperfine interactions in the intermetallic compound GdPdIn using 111In→ 111Cd and 140La→ 140Ce probe nuclei at the In and Gd sites, respectively. The PAC results for 111Cd show two well-defined electric quadrupole frequencies above T C assigned to probes occupying Gd and In sites, with ~50% of site occupation each. The fraction corresponding to In sites increases with temperature reaching 95% around 500 K. Below T C the measurements for 111Cd probe showed combined electric quadrupole plus magnetic dipole interaction with sharp increase in the magnetic field below around 80 K. A pure magnetic interaction with lower hyperfine field values was observed at the Gd sites occupied by 140Ce below 100 K.  相似文献   

8.
We have measured119Sn Mössbauer spectra of the CePtSn and (Ce0.9La0.1)NiSn compounds in the range from 1.5 to 293 K. In CePtSn, the spectra observed above 8 K are well explained by an electric quadrupole interaction. The spectral shape changes below 8 K due to the presence of a magnetic hyperfine field produced by the ordering of the Ce magnetic moments. We have analyzed these spectra assuming an incommensurate magnetic structure. The temperature dependence of the magnetic hyperfine field matches with anS=1/2 mean field curve with a step at 5 K. In (Ce0.9La0.1)NiSn, no magnetic order exists down to 1.5 K.  相似文献   

9.
Marques  J. G.  Barradas  N. P.  Alves  E.  Ramos  A. R.  Gonçalves  A. P.  da Silva  M. F.  Soares  J. C. 《Hyperfine Interactions》2001,136(3-8):333-337

The γ–γ Perturbed Angular Correlation technique was used to study the hyperfine interaction of 181Ta at the Hf site(s) in UFe4Al8 at room temperature and 12 K. The data at room temperature are well described by two electric field gradients, while at low temperature two combined hyperfine interactions have to be considered, one with the magnetic hyperfine field collinear with the c-axis and another with the magnetic hyperfine field in the basal plane. The results are compared with previous Mössbauer and neutron diffraction experiments and the lattice site of Hf is discussed.

  相似文献   

10.
The hyperfine interaction of dilute57Fe in the rare earth (RE)metals Gd to Lu was investigated by Mössbauer measurements with57Co doped RE sources. In all hosts well split, 2-lines spectra were observed at room temperature, with slight asymmetries of the line intensities in some cases. The quadrupole splitting eQVzz/2 increases from 0.29 mm/sec for Gd to 0.50 mm/sec for Tb, and decreases by less than 10 % between Tb and Lu. Only about 10 % of the corresponding electric fieldgradient (EFG) can be accounted for by the ionic EFG on a substitutional RE site. The temperature dependence of the EFG was measured in the case of Tb. No variation within 3 percent was found between 300 K and 700 K. Measurements of the magnetic hyperfine interaction at low temperatures were carried out in Tb. The saturation field of57Fe in this host is Hhf(FeTb;4.2 K)=25(2) KOe. The temperature dependence of the magnetic hyperfine field does not follow the host magnetization (Tc=220K) but vanishes at about 80 K. Similar anomalies of Hhf(T) have previously been observed for other transition element impurities in the RE ferromagnets.  相似文献   

11.
The temperature dependence of the magnetic and electric hyperfine interactions at the site of 181Ta impurities in polycrystalline Dy has been measured between 4.2 and 178 K using the time differential perturbed angular correlation technique. The value of the magnetic hyperfine field at 4.2 K is: |Hhf(TaDy)| = 212(9) kG The temperature dependence of the magnetic hyperfine field follows closely the prediction of the molecular field model.  相似文献   

12.
With the Möβbauer technique the hyperfine splittings of the 67.4 keV transition of61Ni in compounds and alloys have been studied. A magnetic momentΜ 61,4=+ (0,477 ±0.031)Μ n of the first excited state has been determined. From isomer shifts an order of magnitude estimate of the change in radius ofδr 2〉/〈r 2〉=?6· 10?4 can be inferred. The electric quadrupole interaction of the first excited level has been observed in Ni-J-boracite. In addition the hyperfine fields at the nickel sites were determined in the alloy series Ni x Fe1-x (0≦x≦1). In one case an effect of polarization in a high external field is measured. The fields in some rare earth (RE) intermetallic compounds of the form RENi2 were deduced from linewidth to be less than 15 kOe.  相似文献   

13.
A crystal field analysis of the experimental data on magnetic, optical and thermal properties of Dy(OH)3 single crystals have been published The nuclear hyperfine properties of Dy3+ in Dy(OH)3 were studied using a crystal field thus obtained. The hyperfine spectra were computed from 4–20 K with a minimum number of approximations. Under a weak crystal field, the lowest electronic level is a Kramers' doublet For this highly anisotropic crystal, the magnetic hyperfine and the quadrupole interactions are both prominent The quadrupole interaction energy is temperature dependent The value of the magnetic Sternheimer factor Rhf/R is determined to be 0 14 The observed specific heat ChfR arising from hyperfine interactions have been explained satisfactorily A maxima is expected at 21 mK.  相似文献   

14.
《Physics letters. A》1986,118(2):103-105
In order to estimate the magnetic hyperfine fields at different sites, an analysis of the Mössbauer spectra of polycrystalline untextured Nd2Fe14B, recorded at temperatures above and below the spin reorientation temperature Ts(≈150 K), has been made. Here the signs of the electric field gradients (efg) and the principal axes of efg components have been constrained according to the available crystal structure information below and above Ts. It has been observed that the magnetic hyperfine field changes are similar to the recently reported magnetic moment changes at different sites in an isostructural alloy Tm2Fe14B.  相似文献   

15.
Integral perturbed angular correlations of the 931-155keVγγ-cascade of188Os in Gd have been measured. With this technique the combined magnetic and electric hyperfine interaction of the 155 keV level of188Os as an impurity in a Gd host has been studied as a function of temperature. The result for the electric field gradient of Os in Gd at 300 K is: $$\left| {V_{zz} \left( {Os:\underline {Gd} } \right)} \right| = \left( {12.8_{ - 1.9}^{ + 3.1} } \right) \cdot 10^{17} {V \mathord{\left/ {\vphantom {V {cm^2 }}} \right. \kern-\nulldelimiterspace} {cm^2 }}.$$ For the magnetic hyperfine field at 4.2 K the value $$H_{hf} \left( {Os:\underline {Gd} } \right) = - 134\left( {26} \right)kG$$ was obtained. Sign and magnitude of the magnetic hyperfine field suggest the existence of a localized moment of about ?0.4 µ B at the site of Os in Gd. With increasing temperature the magnetic hyperfine field decreases much stronger than the magnetization of the host. Possible explanations for this anomalous temperature dependence are discussed.  相似文献   

16.
The magnetic and hyperfine properties of Yb3+ in Yb(C2H5SO4)3·.9H2O have been studied using the crystal field (CF) obtained from an analysis of the observed absorption spectra of the crystal. The principal magnetic susceptibilities are in reasonable agreement with those observed both at liquid oxygen and liquid helium temperatures. The observed reversal of magnetic anisotropy at 17.7K is also corroborated. The Schottky heat capacity shows a peak at around 40K. The magnetic hyperfine field due to the 4f electrons at the nucleus is found to be 1.79MG. The hyperfine heat capacity CN has a Schottky anomaly at about 25 mK. Above 1K, in the liquid helium range, CN follows a simple T?2 law as observed by Cooke et al. It is concluded that in the rare earth ethylsulfates a single suitable CF gives a good account of the various properties from room temperature down to liquid He temperatures.  相似文献   

17.
Angular anisotropy of the alpha emission from241Am nuclei oriented by magnetic hyperfine interaction at low temperatures in ZrFe2-host have been observed. The sign of the anisotropy indicates unambiguously the enhanced alpha emission from the poles of241Am nucleus. The value of magnetic hyperfine field on241Am nuclei have been estimated from the temperature dependence of the anisotropy.  相似文献   

18.
Organo di-iron electron reservoirs Fe(CP*)2(Ar) n+ withn=2, 1, 0, where Cp* is C5(CH3)5 and where Ar are the following bridges: biphenyl, dihydrophenanthrene, triphenylene, have been studied by Mössbauer spectroscopy in the solid state. Complexes withn=2, with 36e? in the coordination spheres of the metals, exhibit the usual diamagnetic behaviour of 18e?, FeII mono-iron systems. Complexes withn=1, 37e?, are delocalized mixed valence (FeIIFeI) with a spin 1/2; the magnetic hyperfine interaction, measured under an external field, shows equal delocalization of the 37th e? on the two iron centers and the two bridging carbon atoms of the biphenylene. Complexes withn=0, formally with 38e?, have a practically temperature-independent quadrupole splitting, and isomer shift values which constrast with the expected behaviour of independent FeI, 19e? centers. This indicates that the 37th and 38th electrons are mostly located on the polyaromatic bridge. Spectra obtained in an external field show a negligible magnetic hyperfine interaction and support this conclusion. In the case of biphenyl and dihydrophenanthrene bridges, this electron localization can be related to a strong intramolecular chemical coupling, evidenced by other spectroscopic and X-ray data [1].  相似文献   

19.
The influence of an electric field on the energy levels of the 6d2D3/2-state in the Tl I-spectrum was studied by measuring the shifts of level crossing signals relative to their magnetic field positions. The following values of the magnetic hyperfine constantA and the Stark parameterβ were deduced: ¦A¦=42(2) Mc/sec · gJ/0.8, ¦β¦=0.12(1) Mc/sec/(kV/cm)2 · gJ/0.8 and A/β>0. Assuming that the main part of the energy shifts are caused by admixtures of the 7p2P-states the sign of the Stark parameterβ and —from the measured ratio A/β>0 —the sign of theA-factor should be negative. For electric field strength E?30 kV/cm the energy shifts of the 6d2D3/2state are considerably greater than the hyperfine structure splitting. Therefore the case of decoupled hyperfine structure is considered.  相似文献   

20.
An analysis of the 4.2 K spectra of FexO (x∼0.91) and (Fe0.4Mg0.6)xO is presented in which it is considered that because of the large electric field gradient at Fe2+ defect sites, the spectra cannot be described by Lorentzian sextets. It is assumed that the magnetic hyperfine field vector is oriented at random in the coordinate system defined by the EFG main axis, and that the EFG coordinate system is also distributed randomly. The simplifying assumption of the asymmetry parameter η=0 allows an analytical formula to be used to describe the complex spectra. Distributions of both magnetic hyperfine field and quadrupole interaction were progressively refined resulting in reasonable fits to the spectra with the main features being well reproduced. The magnetic hyperfine field distribution is rather broad with several features present while distinct values were obtained in the distribution of quadrupole interactions. These latter values are considered to correspond to the defect configurations around the Fe2+ sites. The distribution of hyperfine fields is considered to reflect the varying strengths of superexchange due to the high defect concentration as well as the effects of magnetic relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号