首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
First-order rate constants, determined by (1)H NMR, are reported for deuterium exchange between solvent D(2)O and the α-amino carbon of glycine in the presence of increasing concentrations of carbonyl compounds (acetone, benzaldehyde, and salicylaldehyde) and at different pD and buffer concentrations. These rate data were combined with (1)H NMR data that define the position of the equilibrium for formation of imines/iminium ions from addition of glycine to the respective carbonyl compounds, to give second-order rate constants k(DO) for deprotonation of α-imino carbon by DO(-). The assumption that these second-order rate constants lie on linear structure-reactivity correlations between log k(OL) and pK(a) was made in estimating the following pK(a)'s for deprotonation of α-imino carbon: pK(a) = 22, glycine-acetone iminium ion; pK(a) = 27, glycine-benzaldehyde imine; pK(a) ≈ 23, glycine-benzaldehyde iminium ion; and, pK(a) = 25, glycine-salicylaldehyde iminium ion. The much lower pK(a) of 17 [Toth, K.; Richard, J. P. J. Am. Chem. Soc. 2007, 129, 3013-3021] for carbon deprotonation of the adduct between 5'-deoxypyridoxal (DPL) and glycine shows that the strongly electron-withdrawing pyridinium ion is unique in driving the extended delocalization of negative charge from the α-iminium to the α-pyridinium carbon. This favors carbanion protonation at the α-pyridinium carbon, and catalysis of the 1,3-aza-allylic isomerization reaction that is a step in enzyme-catalyzed transamination reactions. An analysis of the effect of incremental changes in structure on the activity of benzaldehyde in catalysis of deprotonation of glycine shows the carbonyl group electrophile, the 2-O(-) ring substituent and the cation pyridinium nitrogen of DPL each make a significant contribution to the catalytic activity of this cofactor analogue. The extraordinary activity of DPL in catalysis of deprotonation of α-amino carbon results from the summation of these three smaller effects.  相似文献   

2.
Second-order rate constants were determined in D(2)O for deprotonation of acetamide, N,N-dimethylacetamide, and acetate anion by deuterioxide ion and for deprotonation of acetamide by quinuclidine. The values of k(B) = 4.8 x 10(-8) M(-1) s(-1) for deprotonation of acetamide by quinuclidine (pK(BH) = 11.5) and k(BH) = 2-5 x 10(9) M(-1) s(-1) for the encounter-limited reverse protonation of the enolate by protonated quinuclidine give pK(a)(C) = 28.4 for ionization of acetamide as a carbon acid. The limiting value of k(HOH) = 1 x 10(11) s(-1) for protonation of the enolate of acetate anion by solvent water and k(HO) = 3.5 x 10(-9) M(-1) s(-1) for deprotonation of acetate anion by HO(-) give pK(a)(C) approximately 33.5 for acetate anion. The change in the rate-limiting step from chemical proton transfer to solvent reorganization results in a downward break in the slope of the plot of log k(HO) against carbon acid pK(a) for deprotonation of a wide range of neutral alpha-carbonyl carbon acids by hydroxide ion, from -0.40 to -1.0. Good estimates are reported for the stabilization of the carbonyl group relative to the enol tautomer by electron donation from alpha-SEt, alpha-OMe, alpha-NH(2), and alpha-O(-) substituents. The alpha-NH(2) and alpha-OMe groups show similar stabilizing interactions with the carbonyl group, while the interaction of alpha-O(-) is only 3.4 kcal/mol more stabilizing than for alpha-OH. We propose that destabilization of the enolate intermediates of enzymatic reactions results in an increasing recruitment of metal ions by the enzyme to provide electrophilic catalysis of enolate formation.  相似文献   

3.
The thermochemical constants for the oxidation of tyrosine and tryptophan through proton coupled electron transfer in aqueous solution have been computed applying a recently developed density functional theory (DFT) based molecular dynamics method for reversible elimination of protons and electrons. This method enables us to estimate the solvation free energy of a proton (H(+)) in a periodic model system from the free energy for the deprotonation of an aqueous hydronium ion (H(3)O(+)). Using the computed solvation free energy of H(+) as reference, the deprotonation and oxidation free energies of an aqueous species can be converted to pK(a) and normal hydrogen electrode (NHE) potentials. This conversion requires certain thermochemical corrections which were first presented in a similar study of the oxidation of hydrobenzoquinone [J. Cheng, M. Sulpizi, and M. Sprik, J. Chem. Phys. 131, 154504 (2009)]. Taking a different view of the thermodynamic status of the hydronium ion, these thermochemical corrections are revised in the present work. The key difference with the previous scheme is that the hydronium is now treated as an intermediate in the transfer of the proton from solution to the gas-phase. The accuracy of the method is assessed by a detailed comparison of the computed pK(a), NHE potentials and dehydrogenation free energies to experiment. As a further application of the technique, we have analyzed the role of the solvent in the oxidation of tyrosine by the tryptophan radical. The free energy change computed for this hydrogen atom transfer reaction is very similar to the gas-phase value, in agreement with experiment. The molecular dynamics results however, show that the minimal solvent effect on the reaction free energy is accompanied by a significant reorganization of the solvent.  相似文献   

4.
The tetraanilino phosphonium cation, [P(N(H)Ph)4]+, 1+, is sequentially deprotonated by Bu(n)Li in thf. The deprotonation reaction of the chloride derivative, Cl, was monitored by (31)P NMR, which revealed the successive formation of the neutral [P(N(H)Ph)3(NPh)], 2, the monoanionic [P(N(H)Ph)2(NPh)2]-, 3-, the dianionic [P(N(H)Ph)(NPh)3]2-, 4(2-), and finally the trianionic species [P(NPh)(4)](3-), (3-). Considering the isoelectronic relationship of oxo, =O, and imino groups, =NR, as well as hydroxy, -OH, and amino groups, -N(H)R, the neutral complex corresponds to phosphoric acid, H3PO4, whereas the anions 3-, 4(2-) and 5(3-) are analogues of dihydrogen phosphate, H2PO4-, monohydrogenphosphate, HPO4(2-), and orthophosphate ions, PO4(3-), respectively. Solid state structures were obtained of 1Cl, 2LiCl(thf)(2), 3Li(thf)(3.5), 3Li(2)Cl(thf)(4.25), 3Li(2)Cl(thf)(6) and 5Li(4)Cl(thf)(4). All systems provide two separate N-P-N chelation sites at opposite ligand faces, either consisting of the di(amino) arrangement P(NH)(2), acting as a double H-bond donor, the di(imino) arrangement PN(2), donating two electron pairs, or the mixed amino imino arrangement P(N)(NH), which supplies both electron pair and H-donor site. Interesting in this aspect is the mixed amino imino derivative 3- which has the ability to chelate a Lewis acid, such as a metal ion, at one face and a Lewis base, such as an anionic or neutral donor at the opposite ligand face. The formation of 1-D aggregates and the entrapment of lithium chloride are key characteristics of the supramolecular structures of the discussed complexes.  相似文献   

5.
The PCP-Rh(I) complex 1a based on the [1,3-phenylenebis(methylene)]bis(diisopropylphosphine) ligand reacts with [diazo(phenyl)methyl]trimethylstannane (2) at room temperature to give novel pincer-type phenyl(dimethylstannyl)methylene]hydrazinato complex 3a. The reaction sequence involves a unique combination of Sn-C bond cleavage, C-C bond formation, C-H activation and intramolecular deprotonation of a rhodium hydride intermediate, which results in methylene transfer from an SnMe group to the pincer system and PCP-chelate expansion. A methylene-transfer reaction was also demonstrated with tetramethyltin as the methylene source in the presence of KOC(CH(3))(3) at room temperature. The resulting unstable "chelate-expanded" Rh(I) complex [(C(10)H(5)(CH(2)PiPr(2))(2))(CH(2))Rh(L)] (L=N(2), THF; 4a) was isolated as its carbonyl derivative 5a. Heating 4a in benzene yielded an equimolar amount of toluene and 1a, which demonstrates the ability of the Rh(I) pincer complex to extract a methylene group from an unactivated alkyl tin substrate and transfer it, via C-C followed by C-H activation, to an arene. Use of fluorobenzene resulted in formation of fluorotoluene. Catalytic methylene-group transfer mediated by 1a was not possible, because of formation of o-xylylene complex 8 under the reaction conditions. Steric parameters play a decisive role in the reactivity with tin compounds; while iPrP derivative 1 a underwent facile reactions, tBuP complex 1b was inert.  相似文献   

6.
N,N-Dialkylhydrazides of S-(4,6,7-trichloro-2,5-dihydroxy-2,3-dihydrobenzo[b]-3-furanyl)dithiocarbonic acids have been obtained by the reaction of 3,4,6,7-tetrachloro-2,5-dihydroxy-2,3-dihydrobenzo[b]furan with N,N-dialkylhydrazinium salts of N,N-dialkylhydrazides of dithiocarbonic acids. Recyclization in boiling ethanol in the presence of conc. HCl with subsequent oxidation leads to the formation of 3-N,N-dialkylamino-5-(3,5,6-trichloro-1,4-benzoquinon-2-yl)thiazoline-2-thiones. An attempt at recyclization in boiling trifluoroacetic acid led to the formation of 3-N,N-dialkylamino-5,6,8-trichloro-7-hydroxy-2,3,3a,8b-tetrahydrothiazolo[4,5-b]benzo[d]furane-2-thiones.  相似文献   

7.
Second-order rate constants k(DO) (M(-1) s(-1)) were determined in D(2)O for deprotonation of the N-terminal alpha-amino carbon of glycylglycine and glycylglycylglycine zwitterions, the internal alpha-amino carbon of the glycylglycylglycine anion, and the acetyl methyl group and the alpha-amino carbon of the N-acetylglycine anion and N-acetylglycinamide by deuterioxide ion. The data were used to estimate values of k(HO) (M(-1) s(-1)) for proton transfer from these carbon acids to hydroxide ion in H(2)O. Values of the pK(a) for these carbon acids ranging from 23.9 to 30.8 were obtained by interpolation or extrapolation of good linear correlations between log k(HO) and carbon acid pK(a) established in earlier work for deprotonation of related neutral and cationic alpha-carbonyl carbon acids. The alpha-amino carbon at a N-protonated N-terminus of a peptide or protein is estimated to undergo deprotonation about 130-fold faster than the alpha-amino carbon at the corresponding internal amino acid residue. The value of k(HO) for deprotonation of the N-terminal alpha-amino carbon of the glycylglycylglycine zwitterion (pK(a) = 25.1) is similar to that for deprotonation of the more acidic ketone acetone (pK(a) = 19.3), as a result of a lower Marcus intrinsic barrier to deprotonation of cationic alpha-carbonyl carbon acids. The cationic NH(3)(+) group is generally more strongly electron-withdrawing than the neutral NHAc group, but the alpha-NH(3)(+) and the alpha-NHAc substituents result in very similar decreases in the pK(a) of several alpha-carbonyl carbon acids.  相似文献   

8.
Yu X  Xue ZL 《Inorganic chemistry》2005,44(5):1505-1510
Ammonolysis of previously reported Cl-M[N(SiMe3)2]3 (M = Zr, 1a; Hf, 1b) leads to the formation of peramides H2N-M[N(SiMe3)2]3 (M = Zr, 2a; Hf, 2b) which upon deprotonation by LiN(SiMe3)2 or Li(THF)3SiPh2But yields imides Li+(THF)n{HN(-)-M[N(SiMe3)2]3} (M = Zr, 3a; Hf, 3b). One -SiMe3 group in 3a-b undergoes silyl migration from a -N(SiMe3)2 ligand to the imide =NH ligand to give Li+(THF)2{Me3SiN(-)-M[NH(SiMe3)][N(SiMe3)2]2} (M = Zr, 4a; Hf, 4b) containing an imide =N(SiMe3) ligand. The kinetics of the 3a --> 4a conversion was investigated between 290 and 315 K and was first-order with respect to 3a. The activation parameters for this silyl migration are DeltaH++ = 13.3(1.3) kcal/mol and DeltaS++ = -34(3) eu in solutions of 3a (in toluene-d8 with 1.07 M THF) prepared in situ. THF in the mixed solvent promoted the 3a --> 4a reaction. The effect of THF on the rate constants of the conversion has been studied, and the kinetics of the reaction was 3.4(0.6)th order with respect to THF. Crystal and molecular structures of H2N-Zr[N(SiMe3)2]3 (2a) and 4a-b have been determined.  相似文献   

9.
通过吸收光谱和荧光光谱等手段研究了正/负电性纳米银对不同pH值的甲基橙(MO)溶液光谱学性质的影响.研究结果表明,正电性纳米银(P-Ag)与甲基橙作用形成新的复合物,吸收光谱表现为复合物体系的性质.负电性纳米银(N-Ag)与甲基橙静电排斥作用,相互作用较弱,吸收光谱仅表现为两者简单叠加.在正电性纳米银-甲基橙体系中,S1→S0荧光明显增强.当溶液pH=2.1时,荧光增强比率最大,当pH=4.8时,荧光增强比率最小;S2→S0荧光减弱,且与体系的pH值关系不大.在负电性纳米银-甲基橙体系中,仅少量纳米银存在条件下,S1→S0荧光略增强.在溶液pH=2.1时,荧光增强比率最大;S2→S0荧光明显减弱,且与体系的pH值关系不大.分析认为,不同电性的纳米银对甲基橙光谱学性质影响不同,与纳米银与甲基橙分子间相互作用、纳米银的局域场增强效应以及无辐射能量转移作用等密切相关.  相似文献   

10.
Thermodynamic and kinetic studies on the X- = NCS-, N3-, and CH3CO2- replacement of H2O/OH- at the CuII exogenous site of the tyrosyl-radical-containing enzyme galactose oxidase (GOaseox) from Fusarium (NRR 2903), have been studied by methods involving UV-vis spectrophotometry (25 degrees C), pH range 5.5-8.7, I = 0.100 M (NaCl). In the case of N3- and CH3CO2- previous X-ray structures have confirmed coordination at the exogenous H2O/OH- site. From the effect of pH on the UV-vis spectrum of GOaseox under buffer-free conditions, acid dissociation constants of 5.7 (pK1a; coordinated H2O) and 7.0 (pK2a; H+Tyr-495) have been determined. At pH 7.0 formation constants K(25 degrees C)/M-1 are NCS- (480), N3- (1.98 x 10(4)), and CH3CO2- (104), and from the variations in K with pH the same two pKa values are seen to apply. No pK1a is observed when X- is coordinated. From equilibration stopped-flow studies rate constants at pH 7.0 for the formation reaction kf(25 degrees C)/M-1 s-1 are NCS- (1.13 x 10(4)) and N3- (5.2 x 10(5)). Both K and kf decrease with increasing pH, consistent with the electrostatic effect of replacing H2O by OH-. In the case of the GOaseox Tyr495Phe variant pK1a is again 5.7, but no pK2a is observed, confirming the latter as acid dissociation of protonated Tyr-495. At pH 7.0, K for the reaction of four-coordinate GOaseox Tyr495Phe with NCS- (1.02 x 10(5) M-1) is more favorable than the value for GOaseox. Effects of H+Tyr-495 deprotonation on K are smaller than those for the H2O/OH- change. The pK1a for GOasesemi is very similar (5.6) to that for GOaseox (both at CuII), but pK2a is 8.0. At pH 7.0 values of K for GOasesemi are NCS- (270 M-1), N3- (4.9 x 10(3)), and CH3CO2- (107).  相似文献   

11.
激光解吸电离飞行时间质谱下的银簇行为   总被引:1,自引:1,他引:0  
近年来,对金属簇的研究已成为化学与物理学中最活跃的研究领域之一[1].金属簇被认为是介于单个原子与固体之间的中间相[2].深入地研究其结构、形成机理及物理与化学行为,对于寻找新的催化剂[3],重新认识气相化学与凝聚相化学的关系[4],都有非常重要的意...  相似文献   

12.
Reduction of [P 2N 2]ZrCl 2 (where P 2N 2 = PhP(CH 2SiMe 2NSiMe 2CH 2) 2PPh) by KC 8 under N 2 generates the dinuclear dinitrogen complex ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2) and impurities in varying yields depending on the solvent and temperature. The toluene complex [P 2N 2]Zr(eta (6)-C 7H 8) along with a dinuclear species with bridging PC 6H 5 groups is observable. Also observable in the crude reaction mixtures is the mu-oxodiazenido derivative, ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2H 2)(mu-O), due to reaction with trace H 2O. This paper reports the full details of the preparation of ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2) including an improved method that involves reduction at low temperatures in a tetrahydrofuran solvent. Also reported is a reproducible synthesis of the oxodiazenido complex along with the X-ray structures of the dinitrogen complex and the oxodiazenido derivative.  相似文献   

13.
The stepwise binding energies (DeltaHdegree(n-1,n)) of 1-8 water molecules to benzene(.+) [Bz(.+)(H2O)n] were determined by equilibrium measurements using an ion mobility cell. The stepwise hydration energies, DeltaHdegree(n-1,n), are nearly constant at 8.5 +/- 1 kcal mol-1 from n = 1-6. Calculations show that in the n = 1-4 clusters, the benzene(.+) ion retains over 90% of the charge, and it is extremely solvated, that is, hydrogen bonded to an (H2O)n cluster. The binding energies and entropies are larger in the n = 7 and 8 clusters, suggesting cyclic or cage-like water structures. The concentration of the n = 3 cluster is always small, suggesting that deprotonation depletes this ion, consistent with the thermochemistry since associative deprotonation Bz(.+)(H2O)(n-1) + H2O-->C6H5. + (H2O)nH+ is thermoneutral or exothermic for n > or = 4. Associative intracluster proton transfer Bz(.+)(H2O)(n+1) + H2O-->C6H5.(H2O)nH+ would also be exothermic for n > or = 4, but lack of H/D exchange with D2O shows that the proton remains on C6H6(.+) in the observed Bz(.+)(H2O)n clusters. This suggests a barrier to intracluster proton transfer, and as a result, the [Bz(.+)(H2O)n]* activated complexes either undergo dissociative proton transfer, resulting in deprotonation and generation of (H2O)nH+, or become stabilized. The rate constant for the deprotonation reaction shows a uniquely large negative temperature coefficient of K = cT(-67+/-4) (or activation energy of -34+/- 1 kcal mol-1), caused by a multibody mechanism in which five or more components need to be assembled for the reaction.  相似文献   

14.
In this study, we analyzed adsorption and binding behaviors of citrate-capped silver nanoparticles (AgNPs) on a pyridyl-terminated surface using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Adsorption of the AgNPs onto the pyridyl-terminated silicon wafer surface was completed through pH-controlled sol immersion. The adsorption occurred predominantly at a pH less than the pK(b) value of the pyridyl group and more than the pK(a1) of citric acid, indicating that the driving force behind adsorption was electrostatic interaction. Adsorption of citrate onto the pyridyl group also occurred at pK(a1) < pH < pK(b) without AgNPs. According to XPS in the N1s region, larger deprotonation from the pyridinium-formed pyridyl groups was demonstrated subsequent to adsorption of the AgNPs. The deprotonation from the pyridinium indicates the formation of the neutral pyridyl group as the counterpart of hydrogen bonding with the carboxyl group of citrate. The binding state between the pyridyl group and citrate surrounding AgNPs is expected to be kept stable through hydrogen bonding and van der Waals force derived from the AgNPs approach to the pyridyl surface.  相似文献   

15.
The reaction of [LWCl] (3) [L = N(CH2CH2NiPr)3] with LiE(SiMe3)2 (E = P, As, Sb) yields the novel, neutral pnictido-bridged complexes [LW = E = WL] (5-7). By following the reaction, which starts from the LiP-(SiMe3)2 derivative, by 31P NMR spectroscopy, the formation of an intermediate with a terminal pnictido ligand can be ruled out. The paramagnetic complexes 5-7 are comprehensively spectroscopically characterised. The X-ray structure analysis of the heterocumulenes 5-7 reveals a linear structure in which the two W-"tren" units bind to the central pnictido atom in a staggered conformation ["tren" = tren-based ligand; tren = tris(2-aminoethyl)-amine. When N2 is used as the inert gas in the synthesis of the starting material [N(CH2CH2NNp)3WCl] [Np = CH2C-(CH3)3], the complex [[N(CH2CH2NNp)3]W2(mu, eta 1: eta 1-N2)] (4) is formed as a side product. Complex 4 possesses a hydrazido(4-) (N2(4-)) ligand connected by two tungsten-"tren" moieties.  相似文献   

16.
We report a combined spectro-photometric and computational investigation of the acid-base equilibria of the N3 solar cell sensitizer [Ru(dcbpyH(2))(2)(NCS)(2)] (dcbpyH(2) = 4,4'-dicarboxyl-2,2' bipyridine) in aqueous/ethanol solutions. The absorption spectra of N3 recorded at various pH values were analyzed by Single Value Decomposition techniques, followed by Global Fitting procedures, allowing us to identify four separate acid-base equilibria and their corresponding ground state pK(a) values. DFT/TDDFT calculations were performed for the N3 dye in solution, investigating the possible relevant species obtained by sequential deprotonation of the four dye carboxylic groups. TDDFT excited state calculations provided UV-vis absorption spectra which nicely agree with the experimental spectral shapes at various pH values. The calculated pK(a) values are also in good agreement with experimental data, within <1 pK(a) unit. Based on the calculated energy differences a tentative assignment of the N3 deprotonation pathway is reported.  相似文献   

17.
The use of a mild, oxidative chlorination route for the synthesis of linear and cyclic carbophosphazenes is described. For example, chlorination of the linear PNCN chain Ph(2)P-N=C(Ph)-N(SiMe(3))(2) (1) with C(2)Cl(6) led to the clean formation of the previously known 8- and 6-membered rings [Ph(2)PNC(Ph)N](2) (2) and [Ph(2)PNC(Ph)NP(Ph)(2)N] (3), respectively. In a similar fashion, the N-alkyl-substituted PNCN derivatives, Ph(2)P-N=C(Ph)-N((t)Bu)SiMe(3) (4) and Ph(2)P-N=C(Ph)-N(i)Pr(2) (7) were readily converted by C(2)Cl(6) into the halogenated derivatives ClPh(2)P=N-C(Ph)=N(t)Bu (5) and [ClPh(2)P=N=C(Ph)-N(i)Pr(2)]Cl (8), respectively. Protonation of 5 was accomplished using HCl and gave the carbophosphazenium salt [ClPh(2)P=N-C(Ph)=N((t)Bu)H]Cl (6). In addition, the isolation of a rare 8-membered P(2)N(4)C(2) heterocycle [(Cl(3)P=N)ClPNC(Ph)NP(Cl)(2)NC(Ph)N] (9) from the reaction of PCl(5) and Li[PhC(NSiMe(3))(2)] is reported. Treatment of 9 with one equivalent of GaCl(3) led to the discovery of an unusual Lewis acid-induced ring contraction reaction whereby the (PNCN)(2) ring in 9 is converted into the novel 6-membered P(2)N(3)C heterocyclic adduct [(Cl(3)P=N)ClPNP(Cl)(2)NC(Ph)N].GaCl(3) (10) with concomitant release of PhCN. Structural characterization of compounds 1, 5, 6, and 8-10 by single-crystal X-ray diffraction is also provided.  相似文献   

18.
Copper(II) complexes of the pentapeptides Ac-HisAlaHisValHis-NH2, Ac-HisValHisAlaHis-NH2, Ac-HisProHisAlaHis-NH2, Ac-HisAlaHisProHis-NH2, Ac-HisGlyHisValHis-NH2 and Ac-HisValHisGlyHis-NH2 have been studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. It has been found that the pentapeptides are efficient ligands for the complexation with copper(II) and exhibit an outstanding versatility in the co-ordination geometry of complexes. The presence of three histidyl residues provides a high possibility for the formation of macrochelates via the exclusive binding of imidazole-N donor atoms. The macrochelation suppresses, but cannot preclude the deprotonation and metal ion co-ordination of amide functions and the species [CuH(-2)L] and [Cu2H(-4)L] predominate at physiological pH in equimolar solutions and in the presence of excess metal ions, respectively. It is also clear from the data that both C-terminal and internal histidyl residues can work as the anchoring sites for metal binding and subsequent amide deprotonation resulting in the formation of co-ordination isomers and dinuclear species in equimolar solutions and in the presence of excess metal ions, respectively. In more alkaline solutions (pH approximately 10) a third amide function can be deprotonated and co-ordinated in the species [CuH(-3)L]- with (N-,N-,N-,N(im)) co-ordination. The dinuclear species [Cu2H(-5)L]- and [Cu2H(-6)L](2-) containing hydroxide ions and/or imidazolato bridges are formed at high pH in the presence of excess of metal ions. The insertion of one proline into the sequence preceding histidyl residues hinders the deprotonation of amide functions at that site and the formation of only mononuclear complexes was observed with these peptides.  相似文献   

19.
Several azaheterometallocubane complexes containing [MTi3N4] cores have been prepared by the reaction of [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) with zinc(II) and copper(I) derivatives. The treatment of 1 with zinc dichloride in toluene at room temperature produces the adduct [Cl2Zn{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (2). Attempts to crystallize 2 in dichloromethane gave yellow crystals of the ammonia adduct [(H3N)Cl2Zn{(mu3-NH)Ti3(eta5-C5Me5)3(mu-NH)2(mu3-N)}] (3). The analogous reaction of 1 with alkyl, (trimethylsilyl)cyclopentadienyl, or amido zinc complexes [ZnR2] leads to the cube-type derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = CH2SiMe3 (5), CH2Ph (6), Me (7), C5H4SiMe3 (8), N(SiMe3)2 (9)) via RH elimination. The amido complex 9 decomposes in the presence of ambient light to generate the alkyl derivative [{Me3Si(H)N(Me)2SiCH2}Zn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (10). The chloride complex 2 reacts with lithium cyclopentadienyl or lithium indenyl reagents to give the cyclopentadienyl or indenyl zinc derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = C5H5 (11), C9H7 (12)). Treatment of 1 with copper(I) halides in toluene at room temperature leads to the adducts [XCu{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (X = Cl (13), I (14)). Complex 13 reacts with lithium bis(trimethylsilyl)amido in toluene to give the precipitation of [{Cu(mu4-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}2] (15). Complex 15 is prepared in a higher yield through the reaction of 1 with [{CuN(SiMe3)2}4] in toluene at 150 degrees C. The addition of triphenylphosphane to 15 in toluene produces the single-cube compound [(Ph3P)Cu{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (16). The X-ray crystal structures of 3, 8, 9, and 15 have been determined.  相似文献   

20.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号