首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe_3C@CNOs and Fe_(0.64)Ni_(0.36)@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.  相似文献   

2.
Nanothread-based porous spongelike Ni3S2 nanostructures were synthesized directly on Ni foil by using a simple biomolecule-assisted method. By varying the experimental parameters, other novel Ni3S2 nanostructures could also be fabricated on the nickel substrate. The electrochemical hydrogen-storage behavior of these novel porous Ni3S2 nanostructures was investigated as an example of the potential properties of such porous materials. The thread-based porous spongelike Ni3S2 could electrochemically charge and discharge with the high capacity of 380 mAh g(-1) (corresponding to 1.4 wt % hydrogen in single-walled nanotubes (SWNT)). A novel two-charging-plateaux phenomenon was observed in the synthesized porous spongelike Ni3S2 nanostructures, suggesting two independent steps in the charging process. We have demonstrated that the morphology of the synthesized Ni3S2 nanostructures had a noticeable influence on their electrochemical hydrogen-storage capacity. This is probably due to the size and density of the pores as well as the microcosmic morphology of different nickel sulfide nanostructures. These novel porous Ni3S2 nanostructures should find wide applications in hydrogen storage, high-energy batteries, luminescence, and catalytic fields. This facile, environmentally benign, and solution-phase biomolecule-assisted method can be potentially extended to the preparation of other metal sulfide nanostructures on metal substrates, such as Cu, Fe, Sn, and Pb foils.  相似文献   

3.
The electrochemical hydrogen storage properties and mechanisms of the Ti55V10Ni35 quasicrystal + xLiH(x = 3, 6 and 9 wt.%) system are investigated and discussed in this paper. A composite material in the Ti55V10Ni35 quasicrystal and system has been synthesized moderately by means of mechanical milling under an argon atmosphere, which can avoid reaction of releasing of hydrogen during the process of milling. The results indicate that the addition of LiH significantly improves the electrochemical characteristics of composite material. The maximum discharge capacity increases from 220.1 mAh/g to 292.3 mAh/g on Ti55V10Ni35 + 6 wt.% LiH, and the cycling stability is also enhanced too. In addition, the high rate dischargeability (HRD) is ameliorated remarkably, and the value of HRD value at 240 mA/g rises by 78.1%–87.8% for Ti55V10Ni35 + 6 wt.% LiH alloy electrodes. The improvement of characteristics of the electrochemical hydrogen storage characteristics may be attributed to LiH, which has excellent electrochemical activity.  相似文献   

4.
The Ml-Mg-Ni-based (Ml = La-rich mixed lanthanide) hydrogen storage alloy Ml0.88Mg0.12Ni3.0-Mn0.10Co0.55Al0.10 was prepared by inductive melting. The micro-structure was analyzed by XRD and SEM. The alloy consists mainly of CaCu5-type phase, Ce2Ni7-type phase and Pr5Co19-type phase. The electrochemical measurements show that the maximum discharge capacity is 386 mAh/g, 16.3% higher than that of the commercial AB5-type alloy (332 mAh/g). At discharge current density of 1 100 mA/g, high rate dischargeability is 62%, while that of the AB5-type alloy is only 45%. The discharge capacity decreases to 315 mAh/g after 300 charge/ discharge cycles, 81.5% of the maximum discharge capacity. __________ Translated from Journal of Xi’an Jiao Tong University, 2008, 42(3) (in Chinese)  相似文献   

5.
Pd-capped Mg_(78)Y_(22) thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to ~1725 mAh·g~(-1).Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.  相似文献   

6.
The difficulties in the use of carbon paste electrodes to quantify the electrochemical adsorption of hydrogen in nanocarbon materials are described. Chronoamperometry studies using a Ferro/Ferri redox couple were performed to obtain the electrochemical active area of paste electrodes prepared by dispersion of differing samples of carbon blacks (CB) within silicon oil. This electrochemical active area was combined with the BET-surface area of the carbon blacks, to obtain the mass of superficial carbon involved in the electrochemical processes. To assure equal conditions for comparison, the electronic conductivity of the paste was equivalent in all the samples. From our results it appears that cyclic voltammetry, combined with carbon paste electrodes and nitrogen adsorption isotherms, provides a simple and less expensive route for the qualitative evaluation of the electrochemical hydrogen uptake of novel carbon materials. Still, for quantitative measurements, some issues remain unsolved in highly structured carbons, where the lack of penetration of the bulky Ferro/Ferri redox couple in the micropores of the CB and the occurrence of solid-state diffusion cause the underestimation of the mass involved in hydrogen adsorption.  相似文献   

7.
贮氢合金表面分析和金属氢化物电极电催化活性   总被引:5,自引:0,他引:5  
贮氢合金表面状态和组成是影响金属氢化物(MH)电极电催化活性的重要因素, MH电极的表面改性处理是改善电极性能的有效方法。用XPS, ICP, BET方法分析了处理后贮氢合金表面组成和状态的变化。讨论了化学还原处理对MH电极电催化活性的影响, 结果表明: 化学还原处理大大提高了MH电极反应的交换电流密度和减低了电极反应活化能。  相似文献   

8.
以工业级SiAl合金微球为前驱物,采用多步刻蚀-热处理策略,制备了金属(Sb-Sn)改性与碳包覆的多孔硅微球复合材料(pSi/Sb-Sn@C)。pSi/Sb-Sn@C具有以 Sb-Sn改性的多孔硅微球(pSi/Sb-Sn)为核、碳包覆层为壳的三维结构。碳外壳可以提高多孔硅微球的电子导电性和机械稳定性,有利于获得稳定的固体电解质界面(SEI)膜;而三维多孔核可以促进锂离子的扩散,增加嵌/脱锂活性位,缓冲嵌锂过程中的体积膨胀。此外,活性金属(Sb-Sn)的引入能够提高复合材料的导电性,并可以贡献一定的储锂容量。由于其特殊的组成和独特的微观结构,pSi/Sb-Sn@C复合材料在1.0 A·g-1电流密度下充放电300次后的可逆容量为1 247.4 mAh·g-1,显示了良好的高速率储锂性能和优异的电化学嵌/脱锂循环稳定性。  相似文献   

9.
缺陷对混合稀土贮氢合金性能的影响   总被引:1,自引:0,他引:1  
贮氢合金是一种重要的功能材料。在多种贮氢合金中,AB~5型稀土系贮氢合金的应用最为广泛。本文用正电子湮没技术(PAT)对AB~5型混合稀土贮氢合金的缺陷进行了研究,并结合X射线衍射(XRD)测试、循环伏安(CV)测试以及合金容量的测定,对合金的结构及性能进行了研究。结果表明,合金微观缺陷的存在能大幅度提高金的性能。  相似文献   

10.
11.
以低温沉淀方法制备的羟基磷灰石(HAp)为载体,采用浸渍法制备了一系列不同Ni含量的Ni/HAp催化剂,并采用BET、H2-TPR、XRD、SEM、FT-IR、TEM和TG-DTA技术对催化剂进行了表征。结果表明,NiO含量为13%的催化剂表现出最好的催化甲烷二氧化碳重整制合成气活性,在850℃、空速3.6×104mL/(h·gcat)的反应条件下,甲烷和二氧化碳的转化率在10 h内分别稳定在72%和83%。这主要归因于催化剂中金属和载体之间的强相互作用。虽然反应后的催化剂表面有少量的积炭,但这些积炭多以丝状炭存在,并不会影响催化剂的活性和稳定性。  相似文献   

12.
使用模型化合物在微型反应釜中研究了载体炭黑对渣油内部氢转移反应的影响。结果表明,炭黑可以明显地促进四氢萘到蒽的氢转移反应。使用等体积浸渍法制备了Fe/炭黑、Ni/炭黑催化剂并对Fe/炭黑催化剂进行了XRD、SEM表征,结果表明,金属硫化物附着在炭黑颗粒的表面,直径为1μm左右。在高压反应釜中研究了载体炭黑和以炭黑为载体的催化剂对克拉玛依常压渣油430℃加氢反应的影响,并于传统的水溶性分散型催化剂的抑焦性能进行了对比。 结果表明,Fe/炭黑、Ni/炭黑催化剂可以明显地抑制渣油加氢反应的生焦,水洗后的催化剂效果比未经水洗的催化剂抑制生焦的效果好;Ni/炭黑催化剂抑焦效果比Fe/炭黑催化剂好;Fe/炭黑催化剂比同等浓度的水溶性Fe催化剂抑焦效果好。对反应产物馏分的分析表明,Fe/炭黑催化剂可以有效地抑制渣油缩合生焦,同时在一定程度上抑制裂化反应。  相似文献   

13.
Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt% at 40 bar and -196℃ The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.  相似文献   

14.
Effects of iron phthalocyanine on the inner pressure of MH/Ni battery   总被引:3,自引:0,他引:3  
The inner gas pressure of the battery beyond 1.01 106 Pa can cause a release of gas from the safety valve for a normal sealed cell, leading to a drying out of electrolyte solution[1], and gradually decreasing the performance of the battery until finally destroying it. During overcharging, oxygen is produced rapidly on the nickel electrode, and it is necessary to eliminate the oxygen and restrain the rising speed of inner pres-sure so as to improve the performance of MH/Ni bat-tery. Phthalocy…  相似文献   

15.
Hydrogen storage alloys La0.63Gd0.2?Mg0.17Ni3.35?x Co x Al0.15 (x?=?0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0) were prepared by induction melting followed by annealing treatment in argon atmosphere. The electrochemical properties of La0.63Gd0.2?Mg0.17Ni3.35?x Co x Al0.15 (x?=?0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0) alloy electrodes depended on the alloy structure type. XRD patterns and EPMA showed that the alloys consisted of Ce2Ni7-type (Gd2Co7-type), CaCu5-type, Pr5Co19-type, and PuNi3-type phase structure. Pr5Co19-type and Ce2Ni7-type phase increased with the increase of Co content x. However, CaCu5-type phase firstly decreased then increased as Co content increased. Rietveld analysis showed that the c-axis lattice parameters and cell volumes of the component phases increased with increasing Co content. The electrochemical measurements showed that as the Co content increased, the maximum discharge capacity and the cyclic stability of the annealed alloys both first increased and then decreased. The La0.63Gd0.2?Mg0.17Ni3.05Co0.3Al0.15 alloy electrode exhibited the maximum discharge capacity (392.92 mAh/g), and La0.63Gd0.2?Mg0.17Ni1.85Co1.5Al0.15 alloy electrode showed the best cyclic stability (S100?=?96.1 %). The electrochemical kinetics studies indicate that La0.63Gd0.2?Mg0.17Ni1.85Co1.5Al0.15 exhibited a higher rate dischargeability (HRD900?=?86.3 %). Electrochemical analyses showed that the control process of alloy electrode reaction is charge-transfer rate in surface film of alloy.  相似文献   

16.
采用水热合成法制备了一系列不同金属掺杂的Ce-M(M=Fe、Ni和Cu)复合氧化物,运用低温N2吸附-脱附、XRD、H2-TPR、拉曼光谱和XPS等表征技术对Ce-M复合氧化物的结构与其CO低温氧化反应性能之间的关系进行了关联。结果表明,将Fe、Ni和Cu掺入CeO2明显提高了其氧空位的含量,提升了晶格氧的流动性,从而使Ce-M催化剂的还原能力和催化活性高于纯CeO2。其中,CeCu催化剂氧空位最多、还原能力最好,催化活性最高,130 ℃下即可将CO完全氧化;其次是CeNi催化剂,180 ℃时实现CO完全氧化;与之相比,CeFe催化剂的活性最差,200 ℃时的CO转化率仅为92%。  相似文献   

17.
研究了MgO(111)负载镍基催化剂催化甲烷二氧化碳重整反应性能,针对镍负载量对反应活性和稳定性的影响进行了探讨。结果表明,随着镍负载量从2%增加到10%,催化剂的活性和稳定性均有所提高,但是当镍负载量进一步增加到20%时,催化剂的活性和稳定性略有下降。利用透射电子显微镜、X射线衍射和H2吸附脱附等手段对催化剂结构进行了表征,利用热重分析、拉曼光谱和透射电镜等手段对反应后回收的催化剂进行了表征。研究发现,随着镍负载量的增大,活性金属镍的颗粒粒径呈现增长趋势,并且在反应过程中显示出不同的失活方式。2%Ni/MgO(111)催化剂的失活原因主要以Ni粒子的氧化为主,而负载量大于2%的Ni/MgO(111)催化剂的失活原因则是以积炭为主。  相似文献   

18.
研究了Cr添加量对V2.1TiNi0.3Crx(x=0,0.2,0.4,0.6)贮氢合金的结构和电化学性能的影响。结果表明,所有合金均由V基固溶体主相和TiNi基第二相组成,且第二相呈网状分布在晶界上,部分呈颗粒状分布于合金主相之中。随着Cr含量增大,合金主相的晶胞体积与合金电极的最大放电容量逐渐减小,而循环稳定性逐渐增加,同时合金电极的动力学性能得到改善。在合金中添加Cr使合金电极的活化性能变差,但添加量的进一步增多对其活化性能影响不大。综合考虑,V2.1TiNi0.3Cr0.4合金的电化学性能最好,最大放电容量可达442.20 mAh·g-1,20次充放电循环后容量保持率达81.91%。  相似文献   

19.
研究了Cr添加量对V_(2.1)Ti Ni_(0.3)Crx(x=0,0.2,0.4,0.6)贮氢合金的结构和电化学性能的影响。结果表明,所有合金均由V基固溶体主相和Ti Ni基第二相组成,且第二相呈网状分布在晶界上,部分呈颗粒状分布于合金主相之中。随着Cr含量增大,合金主相的晶胞体积与合金电极的最大放电容量逐渐减小,而循环稳定性逐渐增加,同时合金电极的动力学性能得到改善。在合金中添加Cr使合金电极的活化性能变差,但添加量的进一步增多对其活化性能影响不大。综合考虑,V_(2.1)Ti Ni_(0.3)Cr_(0.4)合金的电化学性能最好,最大放电容量可达442.20 m Ah·g~(-1),20次充放电循环后容量保持率达81.91%。  相似文献   

20.
Ti0.26Zr0.07V0.24Mn0.1Ni0.33Bx(x=0~0.10)系列合金均有V基固溶体相和C14型Laves相两相组成。添加B可提高Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金的放电容量,Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.1合金电极在60 mA·g-1电流放电时的放电容量达到476.7 mAh·g-1。B的添加不同程度地降低了合金的高倍率放电性能,使合金电极表面上电化学反应的电荷转移电阻(R ct)显著增加,交换电流密度(I0)显著降低。添加B可显著改善Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金电极的高温放电性能,Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.025合金电极在343 K高温下其放电容量达到525.6 mAh·g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号