首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the past two decades, the reaction mechanism of C−C bond formation from either methanol or dimethyl ether (DME) in the methanol-to-hydrocarbons (MTH) process has been a highly controversial issue. Described here is the first observation of a surface methyleneoxy analogue, originating from the surface-activated DME, by in situ solid-state NMR spectroscopy, a species crucial to the first C−C bond formation in the MTH process. New insights into the first C−C bond formation were provided, thus suggesting DME/methanol activation and direct C−C bond formation by an interesting synergetic mechanism, involving C−H bond breakage and C−C bond coupling during the initial methanol reaction within the chemical environment of the zeolite catalyst.  相似文献   

2.
In the past two decades, the reaction mechanism of C−C bond formation from either methanol or dimethyl ether (DME) in the methanol‐to‐hydrocarbons (MTH) process has been a highly controversial issue. Described here is the first observation of a surface methyleneoxy analogue, originating from the surface‐activated DME, by in situ solid‐state NMR spectroscopy, a species crucial to the first C−C bond formation in the MTH process. New insights into the first C−C bond formation were provided, thus suggesting DME/methanol activation and direct C−C bond formation by an interesting synergetic mechanism, involving C−H bond breakage and C−C bond coupling during the initial methanol reaction within the chemical environment of the zeolite catalyst.  相似文献   

3.
综述了甲醇制烃(MTH)反应机理的研究概况.分别介绍了MTH反应过程中的二甲醚生成、烃池机理、深度反应、催化剂失活原因和副产物甲烷的生成途径,重点综述了烃池机理的研究进展和存在的争议.指出了明确分子筛结构和酸性对烃池物种类型、低碳烯烃生成路径的影响以及初始C—C键形成机制是未来MTH机理研究的方向,据此指导并开发出抗积炭失活能力强、目标产物选择性高的催化剂仍是改进MTH工艺的关键.  相似文献   

4.
The adsorption of methanol and its subsequent transformation to form dimethyl ether (DME) on a commercial grade eta-alumina catalyst has been investigated using a combination of mass selective temperature-programmed desorption (TPD) and diffuse reflectance infrared spectroscopy (DRIFTS). The infrared spectrum of a saturated overlayer of methanol on eta-alumina shows the surface to be comprised of associatively adsorbed methanol and chemisorbed methoxy species. TPD shows methanol and DME to desorb with respective maxima at 380 and 480 K, with desorption detectable for both molecules up to ca. 700 K. At 673 K, infrared spectroscopy reveals the formation of a formate species; the spectral line width of the antisymmetric C-O stretch indicates the adoption of a high symmetry adsorbed state. Conventional TPD using a tubular reactor, combined with mass spectrometric analysis of the gas stream exiting the IR cell, indicate hydrogen and methane evolution to be associated with formation of the surface formate group and CO evolution with its decomposition. A reaction scheme is proposed for the generation and decomposition of this important reaction intermediate. The overall processes involved in (i) the adsorption/desorption of methanol, (ii) the transformation of methanol to DME, and (iii) the formation and decomposition of formate species are discussed within the context of a recently developed four-site model for the Lewis acidity of eta-alumina.  相似文献   

5.
采用等容浸渍法制备改性脱水催化剂,通过H2-TPR、Pyridine-IR、还原态NH3-TPD、XRD等表征手段,以及目标反应浆态床CO+H2合成二甲醚,研究了催化剂的还原性能以及酸中心分布与反应性能之间的关系。H2-TPR结果表明,在脱水催化剂γ-Al2O3、V2O5/γ-Al2O3和Sm2O3/γ-Al2O3上不出现还原峰,V2O5、Sm2O3的加入改善了复合催化剂中Cu的还原性能,促进了甲醇催化剂的还原。Pyridine-IR表明,V2O5和Sm2O3的加入对L酸、B酸的量影响不大。还原态NH3-TPD说明V2O5和Sm2O3的加入改变了酸中心的分布,增加了弱酸中心的比率。XRD结果发现,V2O5和Sm2O3均匀分散在γ-Al2O3上,没有新的物种生成。二甲醚合成目标反应的结果表明,改性后催化剂的反应活性增强,合成反应中CO转化率、二甲醚的选择性都得到提高。V2O5和Sm2O3的添加增加了弱酸中心数量,促进了脱水活性,从而提高了复合催化剂合成二甲醚的活性和选择性。  相似文献   

6.
HCHO has been confirmed as an active intermediate in the methanol‐to‐hydrocarbon (MTH) reaction, and is critical for interpreting the mechanisms of coke formation. Here, HCHO was detected and quantified during the MTH process over HSAPO‐34 and HZSM‐5 by in situ synchrotron radiation photoionization mass spectrometry. Compared with conventional methods, excellent time‐resolved profiles were obtained to study the formation and fate of HCHO, and other products during the induction, steady‐state reaction, and deactivation periods. Similar formation trends of HCHO and methane, and their close correlation in yields suggest that they are derived from disproportionation of methanol at acidic sites. In the presence of Y2O3, the amount of HCHO changes, affecting the hydrogen‐transfer processes of olefins into aromatics and aromatics into cokes. The yield of HCHO affects the aromatic‐based cycle and the formation of ethylene, indicating that ethylene is mainly formed from the aromatic‐based cycle.  相似文献   

7.
Cu-Ni/Zn催化剂甲醇裂解机理原位XPS研究   总被引:6,自引:0,他引:6  
利用原位XPS 和TPD MS 技术研究了Cu Ni/Zn催化剂在甲醇裂解反应中的机理和活性中心.TPD MS脱附产物中仅检测到CH3OH、H2和CO,而未发现CH4和CH3OCH3、HCOOCH3等其它含氧物种,说明在CH3OH裂解过程中仅包括O-H、C-H键的断裂,而不存在C-O键的断裂过程.In situ XPS的研究发现,在反应温度升高到200 ℃以上时,Cu/Zn催化剂中的Zn明显被还原,反映出Cu/Zn催化剂失活过程的Cu Zn合金生成过程,而在Cu Ni/Zn催化剂中未观察到Zn的还原,且表面出现Cu+/Cu0共存的现象.Cu+和Cu0很可能共同构成催化剂表面的活性中心,Cu+应该是在甲醇裂解反应过程中形成的中间态.产物氢从Cu Ni/Zn 催化剂表面脱附为反应的控速步骤.  相似文献   

8.
Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). This study presents results of DME partial oxidation over a 1.5 wt% Pt/Ce0.4Zr0.6O2 catalyst under the condition of gas hourly space velocity (GHSV) of 15000-60000 ml/(g·h), molar ratio of O2/DME of 0.5 and 500-700 ℃, and this temperature range was also the operation temperature range for intermediate temperature SOFC. The results indicated that the catalyst showed good activity for the selective partial oxidation of DME to H2/syngas. Under the working conditions investigated, DME was completely converted. Increase in reaction temperature enhanced the amount of syngas, but lowered the H2/CO ratio and yield of methane; while increase in reaction GHSV resulted in only slight variation in the distribution of products. The good catalytic activity of Pt supported on Ce0.4Zr0.6O2 for the partial oxidation of DME may be directly associated with the good oxygen storage capacity of the support, which is worth of further investigation to develop materials for application in SOFC.  相似文献   

9.
HCHO has been confirmed as an active intermediate in the methanol-to-hydrocarbon (MTH) reaction, and is critical for interpreting the mechanisms of coke formation. Here, HCHO was detected and quantified during the MTH process over HSAPO-34 and HZSM-5 by in situ synchrotron radiation photoionization mass spectrometry. Compared with conventional methods, excellent time-resolved profiles were obtained to study the formation and fate of HCHO, and other products during the induction, steady-state reaction, and deactivation periods. Similar formation trends of HCHO and methane, and their close correlation in yields suggest that they are derived from disproportionation of methanol at acidic sites. In the presence of Y2O3, the amount of HCHO changes, affecting the hydrogen-transfer processes of olefins into aromatics and aromatics into cokes. The yield of HCHO affects the aromatic-based cycle and the formation of ethylene, indicating that ethylene is mainly formed from the aromatic-based cycle.  相似文献   

10.
The understanding of catalyst deactivation represents one of the major challenges for the methanol‐to‐hydrocarbon (MTH) reaction over acidic zeolites. Here we report the critical role of intermolecular π‐interactions in catalyst deactivation in the MTH reaction on zeolites H‐SSZ‐13 and H‐ZSM‐5. π‐interaction‐induced spatial proximities between cyclopentenyl cations and aromatics in the confined channels and/or cages of zeolites are revealed by two‐dimensional solid‐state NMR spectroscopy. The formation of naphtalene as a precursor to coke species is favored due to the reaction of aromatics with the nearby cyclopentenyl cations and correlates with both acid density and zeolite topology.  相似文献   

11.
The effect of dimethyl ether (DME) co-feed on the catalytic performance of methane dehydroaxomatization (MDA) over 6Mo/HZSM-5 catalyst was investigated as a function of DME concentration under reaction conditions of T=1023 K, p=101 kPa and SV=1500 ml/(g.h). A high benzene yield wasobtained and the stability of the catalyst was improved by adding 1.5%DME to the CH4 feed. The C6H6 yield was as high as ca. 10% even after reaction for 6 h. The stability of the catalyst was further improved when DME concentration in the co-feed gas was increased to an appropriate value. TGA and TPO results of the used 6Mo/HZSM-5 catalyst showed that the amount of coke on the used catalyst was reduced and the chemical nature of the coke was changed. When 1.5%DME was added to the CH4 feed, the coke formed on the catalyst could be burned off more easily than that when only CH4 was used as reactant. It is supposed that the oxygen in DME may play a role in preventing the coke burnt off at lower temperature from transforming into the coke burnt off at higher temperature, which results in the improvement of the stability of the catalyst.  相似文献   

12.
Ni/SiO2催化剂上甲烷催化裂解制氢   总被引:9,自引:5,他引:9  
研究了固定床反应器上甲烷在Ni/SiO2催化剂上的裂解反应,并分别用O2、H2O进行催化剂失活/活化循环实验,并对催化剂用XRD进行分析。结果表明,Ni/SiO2催化剂具有良好的催化性能,甲烷转化率~40%,并能在150 min的时间内保持其活性,无论是用空气氧化还是水蒸气汽化,都能有效地活化已失活的催化剂。XRD实验显示,多次裂解-再生循环过程,对催化剂结构没有明显破坏。  相似文献   

13.
在低温和浆态反应条件下,于同一个反应器中考察了由合成气一体化合成甲醇和甲酸甲酯的反应。结果表明,由碱金属醇化物和CuCl组成的混合催化体系具有甲醇合成活性,在比较温和的条件下(363~403K, 3~6 MPa)进行合成反应时,甲醇的空时收率可达到208 g·L~(-1)·h(-1)(363 K, 5.0Mpa)和43.8g·L~(-1).h~(-1)(添加氢化物助剂)。甲醇的选择性与反应温度有关。一体化合成反应与分步反应有较大差异。反应历程可能为甲醇首先均相催化羰化为甲酸甲酯,然后甲酸甲酯再多相催化氢解为甲醇。  相似文献   

14.
在三相淤浆床-固定床反应装置中,研究含氮合成气直接合成二甲醚。使用双功能混合催化剂,粒度为0.15 mm~0.18 mm。在220 ℃~260 ℃、3.0 MPa~7.0 MPa、空速1 000 mL·g-1·h-1时考察了温度、压力及两种反应器中催化剂的装填比例对CO转化率及二甲醚选择性的影响。结果表明,一氧化碳转化率随反应压力的增加而提高,随着温度升高二甲醚的选择性变化不大,CO转化率的升高较明显,因此在催化剂活性适宜的温度范围内,该反应装置可以采用较高的反应温度。当260 ℃、7.0 MPa、三相床与固定床中催化剂比例为1∶1时,CO的转化率可达84.5%,二甲醚的选择性为78.7%。淤浆床-固定床反应装置具有操作稳定性好、CO转化率高的优点。催化剂在该装置中反应370 h活性没有明显下降。  相似文献   

15.
The induction behavior in CO2 hydrogenation was studied by varying the reaction temperature to investigate the adaptation of the Cu/ZnO/Al2O3 catalyst to the temperature change. The results indicated that a used catalyst had a tendency to keep the last running state in new reaction conditions for MeOH formation, and that this tendency was related to the difference in Cu/Cun+ ratio caused by CO2 and CO produced at different reaction temperatures. However, the reverse water-gas shift reaction (RWGS) induced at four temperatures was completely different from that of methanol synthesis. It implied that the two so-called competitive reactions in CO2+H2, RWGS and methanol synthesis, have different active centers.  相似文献   

16.
The induction behavior in CO2 hydrogenation was studied by varying the reaction temperature to investigate the adaptation of the Cu/ZnO/Al2O3 catalyst to the temperature change,The results indicated that a used catalyst had a tendency to keep the last running state in new reaction conditions for MeOH formation,and that this tendency was related to the difference in Cu/Cu^n ration caused by CO2 and CO produced at different reaction temperatures,However,the reverse water-gas shift reaction (BWGS) induced at four temperatures was completely different from that of methanol synthesis,It implied that the two so-called competitive reactions in CO2 H2,RWGS and methanol synthesis,have different, active centers.  相似文献   

17.
传统的Shilov反应是以PtCl2作为催化剂在水溶液中实现甲烷转化的,该反应的条件温和,在低至80°C时即可将甲烷中非常稳定的C–H键活化.然而,如果将反应温度提高达100°C以上,催化剂Pt(II)则非常容易发生歧化反应转化为Pt(0)或者Pt(IV),其中Pt(0)将会以沉淀的形式存在于反应溶液中.所以该反应只能在较低的温度进行, Shilov体系也只能得到较低的甲烷转化率,因此如何避免高温时催化剂因沉淀失活成为了提高反应转化率的研究重点.本文重点考察了高温条件下Shilov体系的反应机理和反应动力学,从而寻求提高催化体系活性和稳定性的途径.我们在特殊设计的金管反应器中进行了一系列的H/D置换实验,通过GC根据产物不同的分子量来分析检测.实验中,利用特殊设计的金管反应器可将反应压力增加到25.5 MPa,此时甲烷的溶解度与常温条件下(~60°C)相比可被提高1000倍以上,因此甲烷的转化率大大提高.在高温(~200°C)条件下的Shilov体系的水溶液中添加了CD3COOD, F3COOD, D2SO4, DCl和一系列阳离子为[1mim]+的离子液体来考察它们对催化剂沉淀的抑制作用,结果发现,在140°C时添加30%CD3COOD可在少量催化剂存在的条件下就能够明显促进H/D交换,与Shilov的结论吻合.这可能是由于CD3COO基团的螯合作用造成的,但将反应温度升到150°C时则不可避免的生成了Pt(0)沉淀.而F3COOD却在较多催化剂的条件下仍未表现出明显作用,可能是因为F较强的亲电子性使得F3COO基团的螯合作用变弱所致.在140°C时, D2SO4和DCl均能有效抑制Pt(0)沉淀的生成,尤其是DCl,在185°C反应24 h后仍能够稳定水溶液中的Pt基催化剂,但是在该条件下D2SO4却并没有作用.我们还发现, Cl–的浓度与沉淀的抑制直接相关,浓度越高对Pt基催化剂的稳定作用越强,但质子浓度的增加则对沉淀现象没有太大影响,我们推断原因是大量的Cl-能够在[PtCl6]2–的共同作用下将Pt(0)重新转化为了[PtCl6]2–.在140°C进行反应时,各类离子液体的添加能够使Pt(0)沉淀得到抑制,但是对H/D交换率却没有影响,可能是因为离子液体与Pt基催化剂螯合形成了Pt-离子液复合物而削弱了催化活性.在此基础上,我们特别考察了Cl–浓度对催化剂沉淀的影响,发现在200°C时将Cl-浓度提高到一定程度,就能够完全抑制Pt(0)的生成,但Pt基催化剂的活性也会被同时削弱.由于高压金管反应器的应用和高浓度Cl–的添加,使得甲烷的转化率达到90%以上,因此,我们设计了H/D同位素交换实验来考察反应的活性和选择性,从而针对高温Shilov体系的反应动力学进行研究.反应在200°C时进行,催化剂为K2PtCl4,反应介质为30% CD3COOD和DCl的水溶液,实验产物中检测到了CH3D, CH2D2, CHD3和CD4四种甲烷的多重氘代同位素体,说明了交换反应中有多个C–H键被活化.在此基础上,为了对甲烷活化过程进行全面描述,我们建立了涵盖所有连锁反应在内的综合反应网络,其中包含了H/D交换过程中涉及到的一系列平行的一级反应,基于实验数据通过阿伦尼乌斯方程计算得到了全部反应的频率因子、活化能和化学计量系数等反应动力学参数.结果证明,由于甲烷中所有的C–H键均相同,因此多重氘代产物的生成在甲烷转化过程中是不可避免的.其中,甲烷的单一氘代反应活化能为29.9 kcal/mol,双重氘代反应活化能为29.8 kcal/mol,两者十分相近,因此甲烷活化后的单一氘代产物的选择性最高不会超过50%.  相似文献   

18.
The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over a methanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in a tubular integral reactor at 3-7MPa and 220-260℃. The three reactions including methanol synthesis from CO and H2, CO2 and H2, and methanol dehydration were chosen as the independent reactions. The L-H kinetic model was presented for dimethyl ether synthesis and the parameters of the model were obtained by using simplex method combined with genetic algorithm. The model is reliable according to statistical analysis and residual error analysis. The synergy effect of the reactions over the bifunctional catalyst was compared with the effect for methanol synthesis catalyst under the same conditions based on the model. The effects of syngas containing N2 on the reactions were also simulated.  相似文献   

19.
In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim of this work was to investigate how the acid sites concentration, strength, distribution and typology(Br?nsted and Lewis) affect methanol conversion, DME selectivity and coke formation. It was found that the aluminium content affects slightly acid sites strength whilst a relevant effect on acid sites concentration and distribution(Br?nsted/Lewis) was observed as 24% of Lewis sites were found on Alrichest samples, whilst less than 10% of Lewis acid sites were observed on FER at higher Si/Al ratio. All the investigated catalyst samples showed a selectivity toward DME always greater than 0.9 and samples with the lowest Si/Al ratio exhibit the best performances in terms of methanol conversion, approaching the theoretical equilibrium value(around 0.85) at temperatures below 200 °C. Turnover-frequency analysis suggests that this result seems to be related not only to the higher amount of acid sites but also that the presence of Lewis acid sites may play a significant role in converting methanol. On the other hand, the presence of Lewis acid sites, combined with a high acidity, promote the formation of by-products(mainly methane) and coke deposition during the reaction. As final evidence, all the investigated catalysts exhibit very high resistance to deactivation by coke deposition, over 60 h continuous test, and a GC–MS analysis of the coke deposited on the catalyst surface reveals tetra-methyl benzene as main component.  相似文献   

20.
Direct partial oxidation of methane into methanol is a cornerstone of catalysis. The stepped conversion of methane into methanol currently involves activation at high temperature and reaction with methane at decreased temperature, which limits applicability of the technique. The first implementation of copper‐containing zeolites in the production of methanol directly from methane is reported, using molecular oxygen under isothermal conditions at 200 °C. Copper‐exchanged zeolite is activated with oxygen, reacts with methane, and is subsequently extracted with steam in a repeated cyclic process. Methanol yield increases with methane pressure, enabling reactivity with less reactive oxidized copper species. It is possible to produce methanol over catalysts that were inactive in prior state of the art systems. Characterization of the activated catalyst at low temperature revealed that the active sites are small clusters of copper, and not necessarily di‐ or tricopper sites, indicating that catalysts can be designed with greater flexibility than formerly proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号