首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, we have explored the ansatz that the volume elements of the Bures metrics over quantum systems might serve as prior distributions, in analogy with the (classical) Bayesian role of the volume elements (“Jeffreys' priors”) of Fisher information metrics. Continuing this work, we obtain exact Bures prior probabilities that the members of certain low-dimensional subsets of the fifteen-dimensional convex set of density matrices are separable or classically correlated. The main analytical tools employed are symbolic integration and a formula of Dittmann (J. Phys. A 32, 2663 (1999)) for Bures metric tensors. This study complements an earlier one (J. Phys. A 32, 5261 (1999)) in which numerical (randomization) - but not integration - methods were used to estimate Bures separability probabilities for unrestricted and density matrices. The exact values adduced here for pairs of quantum bits (qubits), typically, well exceed the estimate () there, but this disparity may be attributable to our focus on special low-dimensional subsets. Quite remarkably, for the q= 1 and states inferred using the principle of maximum nonadditive (Tsallis) entropy, the Bures probabilities of separability are both equal to . For the Werner qubit-qutrit and qutrit-qutrit states, the probabilities are vanishingly small, while in the qubit-qubit case it is . Received 10 December 1999 and Received in final form 24 February 2000  相似文献   

2.
In this paper, an intuitive approach is employed to generalize the full separability criterion of tripartite quantum states of qubits to the higher-dimensional systems [Phys. Rev. A 72, 022333 (2005)]. A distinct characteristic of the present generalization is that less restrictive conditions are needed to characterize the properties of full separability. Furthermore, the formulation for pure states can be conveniently extended to the case of mixed states by utilizing the Kronecker product approximate technique. As applications, we give the analytic approximation of the criterion for weakly mixed tripartite quantum states and investigate the full separability of some weakly mixed states.  相似文献   

3.

Masking of quantum information means that information is hidden from a subsystem and spread over a composite system. Modi et al. proved in [Phys. Rev. Lett. 120, 230501 (2018)] that this is true for some restricted sets of nonorthogonal quantum states and it is not possible for arbitrary quantum states. In this paper, we discuss the problem of masking quantum information encoded in pure and mixed states, respectively. Based on an established necessary and sufficient condition for a set of pure states to be masked by an operator, we find that there exists a set of four states that can not be masked, which implies that to mask unknown pure states is impossible. We construct a masker S? and obtain its maximal maskable set, leading to an affirmative answer to a conjecture proposed in Modi’s paper mentioned above. We also prove that an orthogonal (resp. linearly independent) subset of pure states can be masked by an isometry (resp. injection). Generalizing the case of pure states, we introduce the maskability of a set of mixed states and prove that a commuting subset of mixed states can be masked by an isometry S while it is impossible to mask all of mixed states by any operator. We also find the maximal maskable sets of mixed states of the isometries S? and S, respectively.

  相似文献   

4.
If n qubits were distributed between 2 parties, which quantum pure states and distributions of qubits would allow all-versus-nothing (or Greenberger-Horne-Zeilinger-like) proofs of Bell's theorem using only single-qubit measurements? We show a necessary and sufficient condition for the existence of these proofs for any number of qubits, and provide all distinct proofs up to n=7 qubits. Remarkably, there is only one distribution of a state of n=4 qubits, and six distributions, each for a different state of n=6 qubits, which allow these proofs.  相似文献   

5.
The quantum marginal problem asks what local spectra are consistent with a given spectrum of a joint state of a composite quantum system. This setting, also referred to as the question of the compatibility of local spectra, has several applications in quantum information theory. Here, we introduce the analogue of this statement for Gaussian states for any number of modes, and solve it in generality, for pure and mixed states, both concerning necessary and sufficient conditions. Formally, our result can be viewed as an analogue of the Sing-Thompson Theorem (respectively Horn’s Lemma), characterizing the relationship between main diagonal elements and singular values of a complex matrix: We find necessary and sufficient conditions for vectors (d 1,..., d n ) and (c 1,..., c n ) to be the symplectic eigenvalues and symplectic main diagonal elements of a strictly positive real matrix, respectively. More physically speaking, this result determines what local temperatures or entropies are consistent with a pure or mixed Gaussian state of several modes. We find that this result implies a solution to the problem of sharing of entanglement in pure Gaussian states and allows for estimating the global entropy of non-Gaussian states based on local measurements. Implications to the actual preparation of multi-mode continuous-variable entangled states are discussed. We compare the findings with the marginal problem for qubits, the solution of which for pure states has a strikingly similar and in fact simple form.  相似文献   

6.
王洪福  张寿 《中国物理 B》2012,21(10):100309-100309
Clock synchronization is a well-studied problem with many practical and scientific applications.We propose an arbitrary accuracy iterative quantum algorithm for distributed clock synchronization using only three qubits.The n bits of the time difference between two spatially separated clocks can be deterministically extracted by communicating only O(n) messages and executing the quantum iteration process n times based on the classical feedback and measurement operations.Finally,we also give the algorithm using only two qubits and discuss the success probability of the algorithm.  相似文献   

7.
The possibility of preparing two-photon entangled states encoding three or more qubits in each photon leads to the following problem: If n quabits were distributed between two parties, which quantum pure states and qubit distributions would allow all-versus-nothing (or Greenberger-Horne-Zeilinger-like) proofs of Bell’s theorem using only single-qubit measurements? We show a necessary and sufficient condition for the existence of these proofs and provide all existing proofs up to n = 7 qubits. On the other hand, the possibility of preparing n-photon n-qubit graph states leads to the following problem: If n qubits were distributed between n parties, which would be the optimal Bell inequalities? We show all optimal n-party Bell inequalities for the perfect correlations of any graph state of n < 6 qubits. Optimal means that the ratio between the quantum violation and the bound for local hidden-variable theories is the maximum over all possible combinations of perfect correlations. This implies that the required detection efficiencies for loophole-free Bell tests are minimal.  相似文献   

8.
We propose a rotationally-invariant quantum key distribution scheme that uses a pair of orthogonal qubit trines, realized as mixed states of three physical qubits. The measurement outcomes do not depend on how Alice and Bob choose their individual reference frames. The efficient key generation by two-way communication produces two independent raw keys, a bit key and a trit key. For a noiseless channel, Alice and Bob get a total of 0.573 key bits per trine state sent (98% of the Shannon limit). This exceeds by a considerable amount the yield of standard trine schemes, which ideally attain half a key bit per trine state. Eavesdropping introduces an ?-fraction of unbiased noise, ensured by twirling if necessary. The security analysis reveals an asymmetry in Eve's conditioned ancillas for Alice and Bob resulting from their inequivalent roles in the key generation. Upon simplifying the analysis by a plausible symmetry assumption, we find that a secret key can be generated if the noise is below the threshold set by ?=0.197.  相似文献   

9.
The review of new formulation of conventional quantum mechanics where the quantum states are identified with probability distributions is presented. The invertible map of density operators and wave functions onto the probability distributions describing the quantum states in quantum mechanics is constructed both for systems with continuous variables and systems with discrete variables by using the Born’s rule and recently suggested method of dequantizer–quantizer operators. Examples of discussed probability representations of qubits (spin-1/2, two-level atoms), harmonic oscillator and free particle are studied in detail. Schrödinger and von Neumann equations, as well as equations for the evolution of open systems, are written in the form of linear classical–like equations for the probability distributions determining the quantum system states. Relations to phase–space representation of quantum states (Wigner functions) with quantum tomography and classical mechanics are elucidated.  相似文献   

10.
Probabilistic remote state preparation by W states   总被引:1,自引:0,他引:1       下载免费PDF全文
刘金明  王育竹 《中国物理》2004,13(2):147-152
In this paper we consider a scheme for probabilistic remote state preparation of a general qubit by using W states. The scheme consists of the sender, Alice, and two remote receivers Bob and Carol. Alice performs a projective measurement on her qubit in the basis spanned by the state she wants to prepare and its orthocomplement. This allows either Bob or Carol to reconstruct the state with finite success probability. It is shown that for some special ensembles of qubits, the remote state preparation scheme requires only two classical bits, unlike the case in the scheme of quantum teleportation where three classical bits are needed.  相似文献   

11.
We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at the high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively.  相似文献   

12.
The superposition states of two qubits including entangled Bell states are considered in the probability representation of quantum mechanics. The superposition principle formulated in terms of the nonlinear addition rule of the state density matrices is formulated as a nonlinear addition rule of the probability distributions describing the qubit states. The generalization of the entanglement properties to the case of superposition of two-mode oscillator states is discussed using the probability representation of quantum states.  相似文献   

13.
We introduce a new genuinely 2N qubit state, known as the “mirror state” with interesting entanglement properties. The well known Bell and the cluster states form a special case of these “mirror states”, for N = 1 and N = 2 respectively. It can be experimentally realized using SWAP and multiply controlled phase shift operations. After establishing the general conditions for a state to be useful for various communicational protocols involving quantum and classical information, it is shown that the present state can optimally implement algorithms for the quantum teleportation of an arbitrary N qubit state and achieve quantum information splitting in all possible ways. With regard to superdense coding, one can send 2N classical bits by sending only N qubits and consuming N ebits of entanglement. Explicit comparison of the mirror state with the rearranged N Bell pairs and the linear cluster states is considered for these quantum protocols. We also show that mirror states are more robust than the rearranged Bell pairs with respect to a certain class of collisional decoherence.  相似文献   

14.
A family of probability distributions (i.e. a statistical model) is said to be sufficient for another, if there exists a transition matrix transforming the probability distributions in the former to the probability distributions in the latter. The Blackwell-Sherman-Stein (BSS) Theorem provides necessary and sufficient conditions for one statistical model to be sufficient for another, by comparing their information values in statistical decision problems. In this paper we extend the BSS Theorem to quantum statistical decision theory, where statistical models are replaced by families of density matrices defined on finite-dimensional Hilbert spaces, and transition matrices are replaced by completely positive, trace-preserving maps (i.e. coarse-grainings). The framework we propose is suitable for unifying results that previously were independent, like the BSS theorem for classical statistical models and its analogue for pairs of bipartite quantum states, recently proved by Shmaya. An important role in this paper is played by statistical morphisms, namely, affine maps whose definition generalizes that of coarse-grainings given by Petz and induces a corresponding criterion for statistical sufficiency that is weaker, and hence easier to be characterized, than Petz’s.  相似文献   

15.
A review of the tomographic probability representation for qudit sates is presented. Properties of related stochastic matrices are considered. Tomograms of two qubits and three qubits are used to study the Bell-type inequalities. The Bell-type inequalities in the standard classical probability theory are discussed. Joint probability distributions of classical systems with several random variables and their properties in the case of factorized distribution functions are considered.  相似文献   

16.
We express the matrix elements of the density matrix of the qutrit state in terms of probabilities associated with artificial qubit states. We show that the quantum statistics of qubit states and observables is formally equivalent to the statistics of classical systems with three random vector variables and three classical probability distributions obeying special constrains found in this study. The Bloch spheres geometry of qubit states is mapped onto triangle geometry of qubits. We investigate the triada of Malevich’s squares describing the qubit states in quantum suprematism picture and the inequalities for the areas of the squares for qutrit (spin-1 system). We expressed quantum channels for qutrit states in terms of a linear transform of the probabilities determining the qutrit-state density matrix.  相似文献   

17.
We introduce the probability distributions describing quantum observables in conventional quantum mechanics and clarify their relations to the tomographic probability distributions describing quantum states. We derive the evolution equation for quantum observables (Heisenberg equation) in the probability representation and give examples of the spin-1/2 (qubit) states and the spin observables. We present quantum channels for qubits in the probability representation.  相似文献   

18.
We study the invariants of arbitrary dimensional multipartite quantum states under local unitary transformations. For multipartite pure states, we give a set of invariants in terms of singular values of coefficient matrices. For multipartite mixed states, we propose a set of invariants in terms of the trace of coefficient matrices. For full rank mixed states with non-degenerate eigenvalues, this set of invariants is also the set of the necessary and sufficient conditions for the local unitary equivalence of such two states.  相似文献   

19.
A linear map of qudit tomogram onto qubit tomogram (qubit portrait) is proposed as a characteristics of the qudit state. In view of the qubit-portrait method, the Bell inequalities for two qubits and two qutrits are discussed within the framework of the probability-representation of quantum mechanics. A semigroup of stochastic matrices is associated with tomographic-probability distributions of qubit and qutrit states. Bell-like inequalities are studied using the semigroup of stochastic matrices. The qudit-qubit map of tomographic probability distributions is discussed as an ansatz to provide a necessary condition for the separability of quantum states.  相似文献   

20.
Subhash Kak 《Pramana》2000,54(5):709-713
This note presents a method of public key distribution using quantum communication of n photons that simultaneously provides a high probability that the bits have not been tampered. It is a variant of the quantum method of Bennett and Brassard (BB84) where the transmission states have been decreased from 4 to 3 and the detector states have been increased from 2 to 3. Under certain assumptions regarding method of attack, it provides superior performance (in terms of the number of usable key bits) for n<18m, where m is the number of key bits used to verify the integrity of the process in the BB84-protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号