首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
The countability index C(S) of a semigroup S is the least positive integer n, if such an integer exists, with the property that every countable subset of S is contained in a subsemigroup with n generators. If no such integer exists. C(S) is defined to be infinite. Let V be a vector space over a field F and denote by End V the endomorphism semigroup of V. In the two main results, it is determined precisely when C(End V)=2 and when C(End V)=x SpecificallyC(End V)=2 if and only if V is infinite dimensional or dim V=1 and F is finite and C(End V)=x if and only if F is infinite and dim V is an integer N≥1.  相似文献   

2.
A graph G = G(V, E) with lists L(v), associated with its vertices v V, is called L-list colourable if there is a proper vertex colouring of G in which the colour assigned to a vertex v is chosen from L(v). We say G is k-choosable if there is at least one L-list colouring for every possible list assignment L with L(v) = k v V(G).

Now, let an arbitrary vertex v of G be coloured with an arbitrary colour f of L(v). We investigate whether the colouring of v can be continued to an L-list colouring of the whole graph. G is called free k-choosable if such an L-list colouring exists for every list assignment L (L(v) = k v V(G)), every vertex v and every colour f L(v). We prove the equivalence of the well-known conjecture of Erd s et al. (1979): “Every planar graph is 5-choosable” with the following conjecture: “Every planar graph is free 5-choosable”.  相似文献   


3.
G的正常[k]-边染色σ是指颜色集合为[k]={1,2,…,k}的G的一个正常边染色.用wσx)表示顶点x关联边的颜色之和,即wσx)=∑ex σe),并称wσx)关于σ的权.图Gk-邻和可区别边染色是指相邻顶点具有不同权的正常[k]-边染色,最小的k值称为G的邻和可区别边色数,记为χ'G).现得到了路Pn与简单连通图H的字典积Pn[H]的邻和可区别边色数的精确值,其中H分别为正则第一类图、路、完全图的补图.  相似文献   

4.
A total cover of a graph G is a subset of V(G)E(G) which covers all elements of V(G)E(G). The total covering number 2(G) of a graph G is the minimum cardinality of a total cover in G. In [1], it is proven that 2(G)[n/2] for a connected graph G of order n. Here we consider the extremal case and give some properties of connected graphs which have a total covering number [n/2]. We prove that such a graph with even order has a 1-factor and such a graph with odd order is factor-critical.  相似文献   

5.
Toru Kojima   《Discrete Mathematics》2003,270(1-3):299-309
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)−f(y)| : xyE(G)} taken over all proper numberings f of G. The composition of two graphs G and H, written as G[H], is the graph with vertex set V(GV(H) and with (u1,v1) is adjacent to (u2,v2) if either u1 is adjacent to u2 in G or u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the composition of two graphs. Let G be a connected graph. We denote the diameter of G by D(G). For two distinct vertices x,yV(G), we define wG(x,y) as the maximum number of internally vertex-disjoint (x,y)-paths whose lengths are the distance between x and y. We define w(G) as the minimum of wG(x,y) over all pairs of vertices x,y of G with the distance between x and y is equal to D(G). Let G be a non-complete connected graph and let H be any graph. Among other results, we prove that if |V(G)|=B(G)D(G)−w(G)+2, then B(G[H])=(B(G)+1)|V(H)|−1. Moreover, we show that this result determines the bandwidth of the composition of some classes of graphs composed with any graph.  相似文献   

6.
7.
Let G be a simple graph. The size of any largest matching in G is called the matching number of G and is denoted by ν(G). Define the deficiency of G, def(G), by the equation def(G)=|V(G)|−2ν(G). A set of points X in G is called an extreme set if def(GX)=def(G)+|X|. Let c0(G) denote the number of the odd components of G. A set of points X in G is called a barrier if c0(GX)=def(G)+|X|. In this paper, we obtain the following:

(1) Let G be a simple graph containing an independent set of size i, where i2. If X is extreme in G for every independent set X of size i in G, then there exists a perfect matching in G.

(2) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is extreme in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|i, and |Γ(Y)||U|−i+m+1 for any Y U, |Y|=m (1mi−1).

(3) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is a barrier in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|=i, and |Γ(Y)|m+1 for any Y U, |Y|=m (1mi−1).  相似文献   


8.
Wang  Tao  Liu  Ming Ju  Li  De Ming 《数学学报(英文版)》2019,35(11):1817-1826
Let G be a graph with vertex set V (G), edge set E(G) and maximum degree Δ respectively. G is called degree-magic if it admits a labelling of the edges by integers {1, 2, …,|E(G)|} such that for any vertex v the sum of the labels of the edges incident with v is equal to (1+|E(G)|)/2·d(v), where d(v) is the degree of v. Let f be a proper edge coloring of G such that for each vertex vV (G),|{e:eEv, f(e) ≤ Δ/2}|=|{e:eEv, f(e) > Δ/2}|, and such an f is called a balanced edge coloring of G. In this paper, we show that if G is a supermagic even graph with a balanced edge coloring and m ≥ 1, then (2m + 1)G is a supermagic graph. If G is a d-magic even graph with a balanced edge coloring and n ≥ 2, then nG is a d-magic graph. Results in this paper generalise some known results.  相似文献   

9.
Let G be a graph and f : G → G be a continuous map. Denote by h(f), P(f), AP(f), R(f)and ω(x, f) the topological entropy of f, the set of periodic points of f, the set of almost periodic points of f, the set of recurrent points of f and the ω-limit set of x under f, respectively. In this paper,we show that the following statements are equivalent:(1) h(f) 0.(2) There exists an x ∈ G such that ω(x, f) ∩ P(f) = ? and ω(x, f) is an infinite set.(3) There exists an x ∈ G such that ω(x, f)contains two minimal sets.(4) There exist x, y ∈ G such that ω(x, f)-ω(y, f) is an uncountable set and ω(y, f) ∩ω(x, f) = ?.(5) There exist an x ∈ G and a closed subset A ? ω(x, f) with f(A) ? A such that ω(x, f)-A is an uncountable set.(6) R(f)-AP(f) = ?.(7) f |P(f)is not pointwise equicontinuous.  相似文献   

10.
A graph G = (VE) on n vertices is primitive if there is a positive integer k such that for each pair of vertices u, v of G, there is a walk of length k from u to v. The minimum value of such an integer, k, is the exponent, exp(G), of G. In this paper, we find the minimum number, h(nk), of edges of a simple graph G on n vertices with exponent k, and we characterize all graphs which have h(nk) edges when k is 3 or even.  相似文献   

11.
It is known that the class of graphs with treewidth (resp. pathwidth) bounded by a constant w can be characterized by a finite obstruction set obs(TW(w)) (resp. obs(PW(w))). These obstruction sets are known for w3 so far. In this paper we give a structural characterization of graphs from obs(TW(w)) (resp. obs(PW(w))) with a fixed number of vertices in terms of subgraphs of the complement. Our approach also essentially simplifies known characterization of graphs from obs(TW(w)) (resp. obs(PW(w))) with (w+3) vertices.

Also for any w3 a graph from obs(TW(w))obs(PW(w)) is constructed, that solves an open problem.  相似文献   


12.
The bondage number b(G) of a graph G is the cardinality of a minimum set of edges whose removal from G results in a graph with a domination number greater than that of G. In this paper, we obtain the exact value of the bondage number of the strong product of two paths. That is, for any two positive integers m≥2 and n≥2, b(Pm?Pn) = 7 - r(m) - r(n) if (r(m), r(n)) = (1, 1) or (3, 3), 6 - r(m) - r(n) otherwise, where r(t) is a function of positive integer t, defined as r(t) = 1 if t ≡ 1 (mod 3), r(t) = 2 if t ≡ 2 (mod 3), and r(t) = 3 if t ≡ 0 (mod 3).  相似文献   

13.
Let X be a Banach space over F(= R or C) with dimension greater than 2. Let N(X) be the set of all nilpotent operators and B_0(X) the set spanned by N(X). We give a structure result to the additive maps on FI + B_0(X) that preserve rank-1 perturbation of scalars in both directions. Based on it, a characterization of surjective additive maps on FI + B_0(X) that preserve nilpotent perturbation of scalars in both directions are obtained. Such a map Φ has the form either Φ(T) = cAT A~(-1)+ φ(T)I for all T ∈ FI + B_0(X) or Φ(T) = cAT*A~(-1)+ φ(T)I for all T ∈ FI + B_0(X), where c is a nonzero scalar,A is a τ-linear bijective transformation for some automorphism τ of F and φ is an additive functional.In addition, if dim X = ∞, then A is in fact a linear or conjugate linear invertible bounded operator.  相似文献   

14.
Let L be a linear transformation on the set of all n×n matrices over an algebraically closed field of characteristic 0. It is shown that if AB=BA implies L(A)L(B)=L(B)L(A) and if either L is nonsingular or the implication in the hypothesis can also be reversed, then L is a sum of a scalar multiple of a similarity transformation and a linear functional times the identity transformation.  相似文献   

15.
In a finite geometry of order q2 we define a (qmqr)-affine cap to be a set of cardinality qm which is a disjoint union ot qm affine subgeometrics AG(r,q). such that no three points are coliinear unless contained in the same AG(r,q).

Given a PG(n,q2), where n = 2t + 1 or 2t + 2, and an n + 1 by n + 1 Hermitian matrix H over Gh(q2) with minimal polynomial (x - λ)n + 1. we show that H induces a partition of the AG(n, q2) obtained by deleting a distinguished hyperplane from the PG, into (qn,ql + 1)-affine caps; these caps can be viewed as the "large points" of an AG (n,q) with a natural incidence relation. It is also shown that H induces another partition of AG(n,q2), into qn - l 1-caps, constituting the "large points" of an affine geometry AG(n + t + 1,q).

Also, the collineation C of PG(n, q2) given by xc = HTx induces collineations on the AG(n,q) and AG(n + t + 1,q).  相似文献   

16.
Let T:XX be a continuous map of a compact metric space X. A point xX is called Banach recurrent point if for all neighborhood V of x, {n ∈ N:Tn(x) ∈ V } has positive upper Banach density. Denote by Tr(T), W(T), QW(T) and BR(T) the sets of transitive points, weakly almost periodic points, quasi-weakly almost periodic points and Banach recurrent points of (X, T). If (X, T) has the specification property, then we show that every transitive point is Banach recurrent and ∅≠W(T) ∩ Tr(T) W*(T) ∩ Tr(T) QW(T) ∩ Tr(T) BR(T) ∩ Tr(T), in which W*(T) is a recurrent points set related to an open question posed by Zhou and Feng. Specifically the set Tr(T) ∩ W*(T)\W(T) is residual in X. Moreover, we construct a point xBR\QW in symbol dynamical system, and demonstrate that the sets W(T), QW(T) and BR(T) of a dynamical system are all Borel sets.  相似文献   

17.
The cell rotation graph D(G) on the strongly connected orientations of a 2-edge-connected plane graph G is defined. It is shown that D(G) is a directed forest and every component is an in-tree with one root; if T is a component of D(G), the reversions of all orientations in T induce a component of D(G), denoted by T, thus (T,T) is called a pair of in-trees of D(G); G is Eulerian if and only if D(G) has an odd number of components (all Eulerian orientations of G induce the same component of D(G)); the width and height of T are equal to that of T, respectively. Further it is shown that the pair of directed tree structures on the perfect matchings of a plane elementary bipartite graph G coincide with a pair of in-trees of D(G). Accordingly, such a pair of in-trees on the perfect matchings of any plane bipartite graph have the same width and height.  相似文献   

18.
The metric dimension dim(G)of a graph G is the minimum number of vertices such that every vertex of G is uniquely determined by its vector of distances to the chosen vertices.The zero forcing number Z(G)of a graph G is the minimum cardinality of a set S of black vertices(whereas vertices in V(G)\S are colored white)such that V(G)is turned black after finitely many applications of"the color-change rule":a white vertex is converted black if it is the only white neighbor of a black vertex.We show that dim(T)≤Z(T)for a tree T,and that dim(G)≤Z(G)+1 if G is a unicyclic graph;along the way,we characterize trees T attaining dim(T)=Z(T).For a general graph G,we introduce the"cycle rank conjecture".We conclude with a proof of dim(T)-2≤dim(T+e)≤dim(T)+1 for e∈E(T).  相似文献   

19.
《Discrete Mathematics》1999,200(1-3):137-147
We form squares from the product of integers in a short interval [n, n + tn], where we include n in the product. If p is prime, p|n, and (2p) > n, we prove that p is the minimum tn. If no such prime exists, we prove tn √5n when n> 32. If n = p(2p − 1) and both p and 2p − 1 are primes, then tn = 3p> 3 √n/2. For n(n + u) a square > n2, we conjecture that a and b exist where n < a < b < n + u and nab is a square (except n = 8 and N = 392). Let g2(n) be minimal such that a square can be formed as the product of distinct integers from [n, g2(n)] so that no pair of consecutive integers is omitted. We prove that g2(n) 3n − 3, and list or conjecture the values of g2(n) for all n. We describe the generalization to kth powers and conjecture the values for large n.  相似文献   

20.
For a graph G of size m1 and edge-induced subgraphs F and H of size k (1km), the subgraph H is said to be obtained from F by an edge jump if there exist four distinct vertices u,v,w, and x in G such that uvE(F), wxE(G)−E(F), and H=Fuv+wx. The minimum number of edge jumps required to transform F into H is the k-jump distance from F to H. For a graph G of size m1 and an integer k with 1km, the k-jump graph Jk(G) is that graph whose vertices correspond to the edge-induced subgraphs of size k of G and where two vertices of Jk(G) are adjacent if and only if the k-jump distance between the corresponding subgraphs is 1. All connected graphs G for which J2(G) is planar are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号