首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
甲基丙烯酸甲酯微乳液聚合中粒子成长过程的探讨   总被引:8,自引:0,他引:8  
以γ射线、过硫酸钾(KPS)、过氧化苯甲酰(BPO)和偶氮二异丁腈(AIBN)引发高单体含量的甲基丙烯酸甲酯(MMA)微乳液聚合,观测了聚合过程中聚合物粒子大小及其分布随转化率的变化.水溶性与油溶性引发剂引发聚合有许多相似之处.聚合初期,体系内很快生成大聚合物粒子;随聚合的进行,体系中大聚合物粒子与小聚合物粒子共存;在更高的转化率下,微液滴成核都成为唯一的成核聚合方式,体系内只留有小粒子.但是两种类型的引发剂引发聚合时,也表现出明显的差别。水溶性引发剂引发聚合时,存在由均相成核到微液滴成核的转变;而油溶性引发剂引发聚合时,在较低的转化率下,聚合主要是在大聚合物粒子内进行的.  相似文献   

2.
高固含量丙烯酸酯的微乳液聚合   总被引:2,自引:0,他引:2  
采用半连续滴加预乳液的微乳液聚合法,合成出聚合物质量分数40%、乳化剂质量分数2.5%的丙烯酸酯微乳液. 考察了单体滴加速度、乳化剂种类及其用量、电解质用量、温度和搅拌等因素对乳液粒径及性能的影响. 研究表明,聚合在相当于Winsor-Ⅰ型的聚合体系中进行,由纯单体相(滴入的单体)和O/W微乳相构成,上层单体只起储存库的作用,它在缓慢的搅拌帮助下扩散进入微乳相中,只要微乳液液面上补加的单体不扰动微乳液的平衡,即不会产生粗粒子. 单体滴加时间控制在4 h,选择质量分数为2.5%的Dowfax2A1/OP-10乳化体系,NaHCO3质量分数为0.16%,反应温度控制在75~80 ℃,搅拌速度控制在150 r/min,可使聚合反应平稳进行,得到了m(聚合物)∶m(乳化剂)=15∶1的丙烯酸酯微乳液.  相似文献   

3.
有机硅-丙烯酸酯聚合物乳液合成及粒径分析   总被引:4,自引:1,他引:3  
通过种子乳液半连续法合成了有机硅改性丙烯酸酯聚合物乳液,并对其粒子形态及分布进行分析。结果表明:通过种子乳液半连续聚合工艺可制备出固含量42wt%,乳化剂含量4wt%(基于单体量)、窄分布纳米粒子的有机硅改性丙烯酸酯聚合物乳液。随反应进行,粒径分布变窄,平均粒径逐渐增大。随乳化剂中SDS与OP-10的摩尔比减少,粒径增大。  相似文献   

4.
本文研究了常规苯乙烯乳液和苯乙烯细乳液在两种不同冷冻条件下,即液氮冷冻和-20℃冰箱冷冻过程中乳液体系稳定性的变化,以及γ射线辐射引发冷冻乳液中单体聚合得到的聚苯乙烯微球的形貌,并探讨了形貌形成机制.结果表明,乳液在-20℃冰箱中冷冻过程中乳液稳定性破坏,单体出现分层现象.而液氮冷冻可以保持冷冻前的乳液相态结构.γ射线辐射可以引发冻乳液中苯乙烯聚合,聚合过程中体系经历了从O/W乳液向W/O/W多重乳液的转变,最终形成粒径分布较宽,直径为1~20μm的泡孔状多孔PS微球.本工作不仅为低温聚合技术提供了新思路,也为多孔聚合物微球材料的制备提供了新方法.  相似文献   

5.
聚硅氧烷/丙烯酸酯核/壳复合胶乳的粒径分布与成核机理   总被引:12,自引:0,他引:12  
通过种子乳液法合成出具有高有机硅含量核 壳结构的聚硅氧烷 丙烯酸酯复合粒子 .研究了聚合方法、乳化剂浓度、引发剂浓度、单体滴加速度等工艺条件对复合乳液粒径尺寸、分布与形态的影响 ,并对复合乳液的成核机理进行了探讨 .研究表明 ,乳化剂浓度对乳液粒子的粒径分布和形态、结构有显著影响 ,引发剂浓度增加将使粒子粒径减小 ;相对一次投料法 ,种子乳液法生成的粒子分布窄 ,具有明显核壳结构 ,通过壳层单体滴加速度可以控制粒子的粒径尺寸和分布 ;而壳层丙烯酸酯聚合物主要是在聚硅氧烷种子表面的“过渡层”聚合、富集而成 .  相似文献   

6.
水性涂料用聚丙烯酸酯微乳液的合成及其表征   总被引:4,自引:0,他引:4  
低污染、低能耗的乳液涂料在建筑涂料中得到了广泛应用,具有核壳结构的聚合物乳液对胶膜的力学性能有较大的改善[1],微米(或纳米)级乳液具有优异的成膜性能,两者均是近年来高分子材料科学中发展十分迅速的新领域[2]。但微乳液聚合时乳化剂用量大,单体含量少。本文采用阴非离子复合乳化剂体系,单体预乳化工艺,种子乳液聚合法,通过正交实验优化聚合工艺参数及体系配方,合成了纳米级聚丙烯酸酯微乳液。并对乳液聚合物的粒径及分布、热性能、分子量及分布、结构等进行了表征。1 实验部分1 1 主要原料及乳液表征苯乙烯(St)、甲基丙烯酸甲…  相似文献   

7.
用甲基丙烯酸甲酯(MMA)作油相,反相胶束微乳液作为模板,制备了纳米氯化银(AgCl)粒子,再进行原位聚合制备了纳米氯化银/聚甲基丙烯酸甲酯(AgCl/PMMA)复合材料.透射电镜(TEM)分析表明,纳米AgCl的尺寸为20~80 nm.扫描电镜(SEM)测试表明纳米AgCl粒子均匀地存在于PMMA基材中.红外分析证明,胶束中水和表面活性剂AOT的羰基在MMA聚合后微观环境发生变化,纳米粒子同聚合物之间有吸附行为.动态力学(DMTA)分析复合材料,发现纳米AgCl粒子与聚合物之间存在强烈相互作用,形成了中间相层(interphase layer),改变了聚合物的动态力学性能.  相似文献   

8.
双连续相微乳液辐射聚合制备多孔材料的研究   总被引:6,自引:0,他引:6  
利用6 0 Co γ射线在室温下辐照双连续相微乳液体系以制备多孔聚合物材料 ,试图在控制多孔材料的微孔结构形态和减少微乳液聚合过程中的相分离方面做一些探索 .通过电导率的测量分析微乳液的结构类型 ,并确定微乳液的双连续相区域范围 .微乳液聚合后所得的样品的孔结构和聚合前的微乳液结构类型有关 ,扫描电镜和热重分析的结果表明双连续相微乳液在聚合时容易发生相分离 ,未必能够得到开孔结构的聚合物 .但适当控制聚合前微乳液的组成 ,如选择合适的水油比例、交联剂的用量和加入一些功能性单体 (如甲基丙烯酸或丙烯酸钠 ) ,可以有效地抑制相分离 ,调节所得聚合物的结构形态 .  相似文献   

9.
以苯乙烯和甲基丙烯酸甲酯混合物作为油相, 采用反相微乳液法制备了AgCl纳米粒子; 通过微乳液原位聚合油相单体得到包含AgCl纳米粒子的聚合乳液; 将聚合乳液与聚偏氟乙烯(PVDF)通过共混法构建了包含AgCl纳米粒子的PVDF共混杂化膜. 紫外-可见光谱、 透射电子显微镜(TEM)及扫描电子显微镜(SEM)等表征结果和超滤实验结果表明, 聚合乳液加入的同时引入了亲水性聚合物和表面亲水的AgCl纳米粒子, 不仅改善了PVDF共混杂化膜的孔隙率和平均孔径, 还显著增强了PVDF共混杂化膜的极性和亲水性, 最终提升了膜的水通量和抗污染性能; 过量聚合乳液加入后不能与PVDF材料均匀共混, 而且AgCl纳米粒子也会在膜中形成团聚物堵塞膜孔隙, 从而削弱了膜的水通量和抗污染性能.  相似文献   

10.
O/W微乳液中聚苯胺超微粒子的制备   总被引:5,自引:0,他引:5  
选择合适的SDBS/苯胺/H2O三组分O/2微乳液与苯胺单体共存的两相体系,以单体相为单体源,在O/W厂组分微乳液中进行了苯胺聚合,所得聚苯胺粒子大小仅为3m,分布较均匀,且具有较好的导电性能。  相似文献   

11.
The seeded microemulsion polymerization of butyl acrylate was studied with γ-rays. The hydrodynamic diameter and its distribution of polymer particles in the seeded microemulsion before and after polymerization were determined with photon correlation spectroscopy (PCS). Though there were micelles in the microemulsion, it was found that new particle formation could be ignored during polymerization. The polymerization kinetics of the seeded microemulsion was investigated. The polymerization rate increases with the dose rate and added monomer content and decreases with the seed fraction. It was completely different from that for seeded emulsion polymerization. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2631–2635, 1998  相似文献   

12.
Particle nucleation in the seeded emulsion polymerization of styrene in the presence of Aerosol‐MA emulsifier micelles and in the absence of monomer droplets (interval III) was investigated. The seed particles were swollen with different amounts of the styrene monomer before the experiments. A larger number of polymer particles formed in interval III than in the corresponding seeded batch operation in the presence of monomer droplets. The increase in the number of particles could be attributed to the reduced rate of growth of new particles, which retarded the depletion of emulsifier micelles. The number of secondary particles initially increased with the initial polymer weight ratio in the seed particles (wp0) but decreased at a higher range of wp0, after reaching a maximum at wp0 = 0.60, and eventually was reduced to zero. At high values of wp0 (>0.75), polymerization occurred in the seed particles, whereas few or no new particles were formed despite the presence of micelles. The cessation of particle formation at high conversions was ascertained with a semibatch process in which the neat monomer feed was added to the reaction vessel containing the seed particles and emulsifier micelles. For wp0 > 0.85, the emulsifier micelles were disintegrated to stabilize the seed particles with no secondary particle formation. The possible reasons for the cessation of particle formation at high wp0 were examined. The size distribution of secondary particles showed a positive skewness in terms of volume because of the declining rate of growth for particles, together with a low rate of growth for small particles. The distribution breadth of new particles sharpened with increasing wp0. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1652–1663, 2002  相似文献   

13.
Particle formation and particle growth compete in the course of an emulsion polymerization reaction. Any variation in the rate of particle growth, therefore, will result in an opposite effect on the rate of particle formation. The particle formation in a semibatch emulsion polymerization of styrene under monomer‐starved conditions was studied. The semibatch emulsion polymerization reactions were started by the monomer being fed at a low rate to a reaction vessel containing deionized water, an emulsifier, and an initiator. The number of polymer particles increased with a decreasing monomer feed rate. A much larger number of particles (within 1–2 orders of magnitude) than that generally expected from a conventional batch emulsion polymerization was obtained. The results showed a higher dependence of the number of polymer particles on the emulsifier and initiator concentrations compared with that for a batch emulsion polymerization. The size distribution of the particles was characterized by a positive skewness due to the declining rate of the growth of particles during the nucleation stage. A routine for monomer partitioning among the polymer phase, the aqueous phase, and micelles was developed. The results showed that particle formation most likely occurred under monomer‐starved conditions. A small average radical number was obtained because of the formation of a large number of polymer particles, so the kinetics of the system could be explained by a zero–one system. The particle size distribution of the latexes broadened with time as a result of stochastic broadening associated with zero–one systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3940–3952, 2001  相似文献   

14.
To explain the kinetic features of particle formation and growth in unseeded emulsion polymerization initiated by oil-soluble initiators, a mathematical kinetic model is proposed, based on the assumption that when initiator radicals or monomer radicals in the water phase enter monomer-solubilized emulsifier micelles, initiate polymerization, and propagate to a chain length which is long enough not to desorb from the micelles, the micelles are regarded to be transformed into polymer particles. It is demonstrated by comparing the experimental results obtained in the emulsion polymerization of styrene initiated by the oil-soluble initiator, 2,2'-azobisisobutyronitrile, with sodium lauryl sulfate as emulsifier that the proposed kinetic model satisfactorily explains the kinetic features such as the effects of initial emulsifier, initiator, and monomer concentrations on both the number of polymer particles produced and the monomer conversion versus time histories. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The results are reported of studies on the kinetics and the time evolution of the particle size distribution in seeded styrene emulsion polymerization systems wherein the seed latex particles were highly swollen with monomer as a result of prior swelling by dodecane. Conditions were such that no new latex particles were formed nor was a significant number of monomer droplets present (“Interval III”). The data were fitted to obtain values for the rate coefficients for entry and exit (desorption) of free radicals. It was found that, during the early part of the polymerization (when the polymer:monomer ratio in the latex particles is considerably less then in an equivalent emulsion polymerization system without dodecane), the entry rate coefficient was much smaller than that measured in systems without dodecane. This effect is consistent with an entry mechanism wherein entering free radicals must displace surfactant molecules from the latex particles.  相似文献   

16.
For the purpose of extending the size range of polymer seed particles used in “dynamic swelling method” (DSM), first it was verified theoretically that the submicron-sized polymer particles produced by emulsion polymerization can also absorb a large amount of monomer by DSM in both equilibrium and kinetic control states. Next, on the basis of the theoretical results, experimentally about 2.6 μm-sized styrene-swollen polystyrene (PS) particles were prepared utilizing DSM in the presence of 0.64 μm-sized monodispersed PS seed particles produced by emulsifier-free emulsion polymerization. Moreover, 2.5 μm-sized monodispersed PS particles were produced by the addition of cupric chloride as a water-soluble inhibitor to depress the by-production of submicron-sized PS particles in the seeded polymerization at 30°C with 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2513–2519, 1998  相似文献   

17.
Emulsion polymerization of vinylidene chloride was carried out at 50°C using sodium lauryl sulfate as emulsifier and potassium persulfate as initiator, respectively. Contrary to the results so far reported, the stirring rate did not affect the progress of the polymerization and such an abnormal kinetic behavior as the rate of polymerization suddenly drops in the course of polymerization was not observed. The number of polymer particles produced was proportional to the 0.7 power of the concentration of emulsifier forming micelles and to the 0.3 power of the initial initiator concentration, respectively, and was independent of the initial monomer concentration. The rate of polymerization was in proportion to the 0.3 power of the concentration of emulsifier forming micelles, to the 0.5 power of the initial initiator concentration, to the 0.2 power of the initial monomer concentration, and to the 0.45 power of the number of polymer particles, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1919–1928, 1998  相似文献   

18.
核/壳结构聚丙烯酸酯塑料增韧剂的制备与结构控制   总被引:8,自引:1,他引:8  
核/壳结构聚丙烯酸酯塑料增韧剂的制备与结构控制张会轩戴英杨海东*冯之榴(吉林工学院化工系长春130012)(中国科学院长春应用化学研究所130022)关键词聚丙烯酸酯,增韧剂,制备,种子乳液聚合1996-08-28收稿,1997-01-06修回国家自...  相似文献   

19.
Conversion versus time curves were measured for poly(N-isopropylacrylamide) microgel latexes prepared by polymerization in water with sodium dodecyl sulfate, SDS. Polymerization rates increased with temperature with methylenebisacrylamide crosslinking monomer consumed faster thanN-isopropylacrylamide. The particle diameter decreased with increasing concentrations of SDS in the polymerization recipe and there was evidence that the rate of polymerization increased somewhat with SDS concentration. Particle formation occurred by homogeneous nucleation as micelles were absent.Comparison of particle size distributions from dynamic light scattering to those from a centrifugal sizer led to the conclusion that larger particles within a specific latex were less swollen with acetonitrile than were the smaller ones. This was interpreted as evidence for the polymer in larger particles having a higher crosslink density. Particle swelling was estimated from swelling ratios defined as the particle volume at 25 °C divided by the volume at 50 °C. In the absence of crosslinking poly(N-isopropylacrylamide) linear chains would disolve at 25 °C. The swelling results indicated that the average crosslink density in the particles decreased with conversion. This was explained by the observation that the methylenebisacrylamide was consumed more quickly and is typical of crosslinking in emulsion polymerization where polymer particles have high polymer concentrations at their birth.  相似文献   

20.
Particle nucleation in the polymerization of styrene microemulsions was found to take place throughout the polymerization as indicated by measurements of the particle number as a function of conversion. A mechanism based on the nucleation in the microemulsion droplets was proposed to explain the experimental findings although homogeneous nucleation and coagulation during polymerization were not completely ruled out. A thermodynamic model was developed to simulate the partitioning of monomer in the different phases during polymerization. The model predicts that the oil cores of the microemulsion droplets were depleted early in the polymerization (4% conversion). Due to the high monomer/polymer swelling ratio of the polymer particles, most of the monomer resides in the polymer particles during polymerization. The termination of chain growth inside the polymer particles was attributed to the chain transfer reaction to monomer. The low n? (less than 0.5) of the microemulsion system was attributed to the fast exit of monomeric radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号