首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-stability is an analogous stability property toA-stability with respect to delay differential equations. It is defined by using a scalar test equation similar to the usual test equation ofA-stability. EveryP-stable method isA-stable, but anA-stable method is not necessarilyP-stable. We considerP-stability of Runge-Kutta (RK) methods and its variation which was originally introduced for multistep methods by Bickart, and derive a sufficient condition for an RK method to have the stability properties on the basis of an algebraic characterization ofA-stable RK methods recently obtained by Schere and Müller. By making use of the condition we clarify stability properties of some SIRK and SDIRK methods, which are easier to implement than fully implicit methods, applied to delay differential equations.  相似文献   

2.
Recently, we have proved that the Radau IA and Lobatto IIIC methods are P-stable, i.e., they have an analogous stability property to A-stability with respect to scalar delay differential equations (DDEs). In this paper, we study stability of those methods applied to multidimensional DDEs. We show that they have a similar property to P-stability with respect to multidimensional equations which satisfy certain conditions for asymptotic stability of the zero solutions. The conditions are closely related to stability criteria for DDEs considered in systems theory. Received October 8, 1996 / Revised version received February 21, 1997  相似文献   

3.
Order stars and stability for delay differential equations   总被引:3,自引:0,他引:3  
Summary. We consider Runge–Kutta methods applied to delay differential equations with real a and b. If the numerical solution tends to zero whenever the exact solution does, the method is called -stable. Using the theory of order stars we characterize high-order symmetric methods with this property. In particular, we prove that all Gauss methods are -stable. Furthermore, we present sufficient conditions and we give evidence that also the Radau methods are -stable. We conclude this article with some comments on the case where a andb are complex numbers. Received June 3, 1998 / Published online: July 7, 1999  相似文献   

4.
A natural Runge-Kutta method is a special type of Runge-Kutta method for delay differential equations (DDEs); it is known that any one-step collocation method is equivalent to one of such methods. In this paper, we consider a linear constant-coefficient system of DDEs with a constant delay, and discuss the application of natural Runge-Kutta methods to the system. We show that anA-stable method preserves the asymptotic stability property of the analytical solutions of the system.  相似文献   

5.
Under the assumption that an implicit Runge-Kutta method satisfies a certain stability estimate for linear systems with constant coefficientsl 2-stability for nonlinear systems is proved. This assumption is weaker than algebraic stability since it is satisfied for many methods which are not evenA-stable. Some local smoothness in the right hand side of the differential equation is needed, but it may have a Jacobian and higher derivatives with large norms. The result is applied to a system derived from a strongly nonlinear parabolic equation by the method of lines.  相似文献   

6.
This paper is concerned with the study of the delay-dependent stability of Runge–Kutta methods for delay differential equations. First, a new sufficient and necessary condition is given for the asymptotic stability of analytical solution. Then, based on this condition, we establish a relationship between τ(0)-stability and the boundary locus of the stability region of numerical methods for ordinary differential equations. Consequently, a class of high order Runge–Kutta methods are proved to be τ(0)-stable. In particular, the τ(0)-stability of the Radau IIA methods is proved.  相似文献   

7.
8.
Summary GeneralizedA()-stable Runge-Kutta methods of order four with stepsize control are studied. The equations of condition for this class of semiimplicit methods are solved taking the truncation error into consideration. For application anA-stable and anA(89.3°)-stable method with small truncation error are proposed and test results for 25 stiff initial value problems for different tolerances are discussed.  相似文献   

9.
Stability of Runge-Kutta methods for the generalized pantograph equation   总被引:9,自引:0,他引:9  
Summary. This paper deals with stability properties of Runge-Kutta (RK) methods applied to a non-autonomous delay differential equation (DDE) with a constant delay which is obtained from the so-called generalized pantograph equation, an autonomous DDE with a variable delay by a change of the independent variable. It is shown that in the case where the RK matrix is regular stability properties of the RK method for the DDE are derived from those for a difference equation, which are examined by similar techniques to those in the case of autonomous DDEs with a constant delay. As a result, it is shown that some RK methods based on classical quadrature have a superior stability property with respect to the generalized pantograph equation. Stability of algebraically stable natural RK methods is also considered. Received May 5, 1998 / Revised version received November 17, 1998 / Published online September 24, 1999  相似文献   

10.
Summary We present a class of Runge-Kutta methods for the numerical solution of a class of delay integral equations (DIEs) described by two different kernels and with a fixed delay . The stability properties of these methods are investigated with respect to a test equation with linear kernels depending on complex parameters. The results are then applied to collocation methods. In particular we obtain that any collocation method for DIEs, resulting from anA-stable collocation method for ODEs, with a stepsize which is submultiple of the delay , preserves the asymptotic stability properties of the analytic solutions.This work was supported by CNR (Italian National Council of Research)  相似文献   

11.
Implicit Runge-Kutta (IRK) methods (such as the s-stage Radau IIA method with s=3,5, or 7) for solving stiff ordinary differential equation systems have excellent stability properties and high solution accuracy orders, but their high computing costs in solving their nonlinear stage equations have seriously limited their applications to large scale problems. To reduce such a cost, several approximate Newton algorithms were developed, including a commonly used one called the simplified Newton method. In this paper, a new approximate Jacobian matrix and two new test rules for controlling the updating of approximate Jacobian matrices are proposed, yielding an improved approximate Newton method. Theoretical and numerical analysis show that the improved approximate Newton method can significantly improve the convergence and performance of the simplified Newton method.  相似文献   

12.
The implementation of implicit Runge-Kutta methods requires the solution of large sets of nonlinear equations. It is known that on serial machines these costs can be reduced if the stability function of ans-stage method has only ans-fold real pole. Here these so-called singly-implicit Runge-Kutta methods (SIRKs) are constructed utilizing a recent result on eigenvalue assignment by state feedback and a new tridiagonalization, which preserves the entries required by theW-transformation. These two algorithms in conjunction with an unconstrained minimization allow the numerical treatment of a difficult inverse eigenvalue problem. In particular we compute an 8-stage SIRK which is of order 8 andB-stable. This solves a problem posed by Hairer and Wanner a decade ago. Furthermore, we finds-stageB-stable SIRKs (s=6,8) of orders, which are evenL-stable.  相似文献   

13.
Unconditionally stable explicit methods for parabolic equations   总被引:2,自引:0,他引:2  
Summary This paper discussesrational Runge-Kutta methods for stiff differential equations of high dimensions. These methods are explicit and in addition do not require the computation or storage of the Jacobian. A stability analysis (based onn-dimensional linear equations) is given. A second orderA 0-stable method with embedded error control is constructed and numerical results of stiff problems originating from linear and nonlinear parabolic equations are presented.  相似文献   

14.
Gekeler  E.  Widmann  R. 《Numerische Mathematik》1986,50(2):183-203
Summary Runge-Kutta methods have been generalized to procedures with higher derivatives of the right side ofy=f(t,y) e.g. by Fehlberg 1964 and Kastlunger and Wanner 1972. In the present work some sufficient conditions for the order of consistence are derived for these methods using partially the degree of the corresponding numerical integration formulas. In particular, methods of Gauß, Radau, and Lobatto type are generalized to methods with higher derivatives and their maximum order property is proved. The applied technique was developed by Crouzeix 1975 for classical Runge-Kutta methods. Examples of simple explicit and semi-implicit methods are given up to order 7 and 6 respectively.  相似文献   

15.
Summary Brown [1] introducedk-step methods usingl derivatives. Necessary and sufficient conditions forA 0-stability and stiff stability of these methods are given. These conditions are used to investigate for whichk andl the methods areA 0-stable. It is seen that for allk andl withk1.5 (l+1) the methods areA 0-stable and stiffly stable. This result is conservative and can be improved forl sufficiently large. For smallk andl A 0-stability has been determined numerically by implementing the necessary and sufficient condition.  相似文献   

16.
This paper deals with some relevant properties of Runge–Kutta (RK) methods and symplectic partitioned Runge–Kutta (PRK) methods. First, it is shown that the arithmetic mean of a RK method and its adjoint counterpart is symmetric. Second, the symplectic adjoint method is introduced and a simple way to construct symplectic PRK methods via the symplectic adjoint method is provided. Some relevant properties of the adjoint method and the symplectic adjoint method are discussed. Third, a class of symplectic PRK methods are proposed based on Radau IA, Radau IIA and their adjoint methods. The structure of the PRK methods is similar to that of Lobatto IIIA–IIIB pairs and is of block forms. Finally, some examples of symplectic partitioned Runge–Kutta methods are presented.  相似文献   

17.
Summary In this paper the maximum attainable order of a special class of symmetrizers for Gauss methods is studied. In particular, it is shown that a symmetrizer of this type for thes-stage Gauss method can attain order 2s-1 only for 1 s 3, and that these symmetrizers areL-stable. A classification of the maximum attainable order of symmetrizers for some higher stages is presented. AnL-stable symmetrizer is also shown to exist for each of the methods studied.  相似文献   

18.
Summary Using a special representation of Runge-Kutta methods (W-transformation), simple characterizations ofA-stability andB-stability have been obtained in [9, 8, 7]. In this article we will make this representation and their conclusions more transparent by considering the exact Runge-Kutta method. Finally we demonstrate by a numerical example that for difficult problemsB-stable methods are superior to methods which are onlyA-stable.Talk, presented at the conference on the occasion of the 25th anniversary of the founding ofNumerische Mathematik, TU Munich, March 19–21, 1984  相似文献   

19.
Summary A widely used technique for improving the accuracy of solutions of initial value problems in ordinary differential equations is local extrapolation. It is well known, however, that when using methods appropriate for solving stiff systems of ODES, the stability of the method can be seriously degraded if local extrapolation is employed. This is due to the fact that performing local extrapolation on a low order method is equivalent to using a higher order formula and this high order formula may not be suitable for solving stiff systems. In the present paper a general approach is proposed whereby the correction term added on in the process of local extrapolation is in a sense a rational, rather than a polynomial, function. This approach allows high order formulae with bounded growth functions to be developed. As an example we derive anA-stable rational correction algorithm based on the trapezoidal rule. This new algorithm is found to be efficient when low accuracy is requested (say a relative accuracy of about 1%) and its performance is compared with that of the more familiar Richardson extrapolation method on a large set of stiff test problems.  相似文献   

20.
Lower bounds for are given for which equidistant s-point collocation methods areA()-stable for arbitrarys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号