首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 48-echo pulse sequence with five different echo-spacing combinations was examined to determine how one can most effectively measure the T2 relaxation characteristics of cerebral tissue containing a long T2 component. For each scan, the first 32 echoes had an echo spacing of 10 ms, while the spacing for Echoes 33-48 (DeltaTE2) was 10, 20, 30, 40 or 50 ms. In an in vivo study using 10 normal volunteers, it was found that the resolution of T2 distribution peaks for both myelin water (approximately 20 ms) and intracellular/extracellular (IE) water (approximately 80 ms) improved as DeltaTE2 increased. The geometric mean T2 values of the main peak agreed within the error for all DeltaTE2 values. A phantom study simulated T2 relaxation distributions that are expected in the brains of patients with demyelinating diseases. For phantoms in which the T2 values of the IE and lesion (200-500 ms) water compartments were separated by at least a factor of 3, each compartment in the distribution was better resolved when DeltaTE2=40 or 50 ms. On the basis of these results, we recommend the use of extended DeltaTE2 values for imaging patients with lesions, without the risk of losing valuable short T2 information.  相似文献   

2.
In this study, a circulation system was used to measure T(1) values of bovine blood under physiological conditions at field strengths of 4.7, 7 and 9.4 T. Results show that T(1) increases linearly with magnetic field B(0) and can be described with the equation T(1)=129 ms/T B(0)+1167 ms for magnetic field strengths between 1.5 and 9.4 T.  相似文献   

3.
Several single-scan experiments for the measurement of the longitudinal relaxation time (T1) are proposed. These experiments result in fast and accurate determinations of the relaxation rate, are relatively robust to pulse imperfections, and preserve information about the chemical shift. The method used in these experiments is to first encode the T1 values as a spatial variation of the magnetization and then to read out this variation either by applying a weak gradient during acquisition or by sequentially observing different slices of the sample. As a result, it is possible to reduce the time necessary to determine the T1 values by one or two orders of magnitude. This time saving comes at the expense of the signal-to-noise level of the resulting spectrum and some chemical shift resolution.  相似文献   

4.
The depth-wise variation of T(2) relaxation time is known to reflect the collagen network architecture in cartilage, while the delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique is sensitive to tissue proteoglycan (PG) concentration. As the cartilage PG content varies along the tissue depth, the depth-dependent accumulation of the contrast agent may affect the inherent T(2) of cartilage in a nonconstant manner. Therefore, T(2) and dGEMRIC are typically measured in separate MRI sessions. In the present in vitro MRI study at 9.4 T, depth-wise T(2) profiles and collagenous zone thicknesses as determined from T(2) maps in the absence and presence of Gd-DTPA(2-) (T(2) and T(2Gd), respectively) were compared in samples of intact human articular cartilage (n=65). These T(2) measures were further correlated with birefringence (BF) of polarized light microscopy (PLM) to quantify the ability of MRI to predict the properties of the collagen fibril network. The reproducibility of the T(2) measurement in the current setup was also studied. Typical tri-laminar collagen network architecture was observed both with and without Gd-DTPA(2-). The inverse of BF (1/BF) correlated significantly with both T(2) and T(2Gd) (r=0.91, slope=0.56 and r=0.90, slope=0.63), respectively. The statistically significant linear correlations between zone thicknesses as determined from T(2) and T(2Gd) were r=0.55 (slope=0.49), r=0.74 (slope=0.71) and r=0.95 (slope=0.94) for superficial, middle and deep tissue zones, respectively. Reproducibility of the T(2) measurement was worst for superficial cartilage. Consistent with PLM, T(2) and T(2Gd) measurements reveal highly similar depth-dependent information on collagen network in intact human cartilage. Thus, dGEMRIC and T(2) measurements in one MRI session are feasible for intact articular cartilage in vitro.  相似文献   

5.
T2* measurements in human brain at 1.5, 3 and 7 T   总被引:1,自引:0,他引:1  
Measurements have been carried out in six subjects at magnetic fields of 1.5, 3 and 7 T, with the aim of characterizing the variation of T2* with field strength in human brain. Accurate measurement of T2* in the presence of macroscopic magnetic field inhomogeneity is problematic due to signal decay resulting from through-slice dephasing. The approach employed here allowed the signal decay due to through-slice dephasing to be characterized and removed from data, thus facilitating an accurate measurement of T2* even at ultrahigh field. Using double inversion recovery turbo spin-echo images for tissue classification, an analysis of T2* relaxation times in cortical grey matter and white matter was carried out, along with an evaluation of the variation of T2* with field strength in the caudate nucleus and putamen. The results show an approximately linear increase in relaxation rate R2* with field strength for all tissues, leading to a greater range of relaxation times across tissue types at 7 T that can be exploited in high-resolution T2*-weighted imaging.  相似文献   

6.
Experimental gliomas (F98) were inoculated in cat brain for the systematic study of their in vivo T2 relaxation time behavior. With a CPMG multi-echo imaging sequence, a train of 16 echoes was evaluated to obtain the transverse relaxation time and the magnetization M(0) at time t = 0. The magnetization decay curves were analyzed for biexponentiality. All tissues showed monoexponential T2, only that of the ventricular fluid and part of the vital tumor tissue were biexponential. Based on these NMR relaxation parameters the tissues were characterized, their correct assignment being assured by comparison with histological slices. T2 of normal grey and white matter was 74 ± 6 and 72 ± 6 msec, respectively. These two tissue types were distinguished through M(0) which for white matter was only 0.88 of the intensity of grey matter in full agreement with water content, determined from tissue specimens. At the time of maximal tumor growth and edema spread a tissue differentiation was possible in NMR relaxation parameter images. Separation of the three tissue groups of normal tissue, tumor and edema was based on T2 with T2(normal) < T2(tumor) < T2(edema). Using M(0) as a second parameter the differentiation was supported, in particular between white matter and tumor or edema. Animals were studied at 1–4 wk after tumor implantation to study tumor development. The magnetization M(0) of both tumor and peritumoral edema went through a maximum between the second and third week of tumor growth. T2 of edema was maximal at the same time with 133 ± 4 msec, while the relaxation time of tumor continued to increase during the whole growth period, reaching values of 114 ± 12 msec at the fourth week. Thus, a complete characterization of pathological tissues with NMR relaxometry must include a detailed study of the developmental changes of these tissues to assure correct experimental conditions for the goal of optimal contrast between normal and pathological regions in the NMR images.  相似文献   

7.
This study investigated the feasibility of an MRI protocol providing whole-body T2* maps at 1.5 T. Seven healthy volunteers (mean age=30.1+/-3.7, three women and four men) and two patients (both male, 53 and 46 years old) affected by transfusion-dependent anemias participated in the study. Coronally oriented images of five subsequent body levels were acquired using a fat-suppressed multiecho 2D gradient-echo sequence (12 echo times ranging from 4.8 to 76.3 ms were selected) and afterwards composed. Parametrical T2* maps of the whole body were reconstructed on a pixel-by-pixel basis. For both, healthy volunteers and patients, representative T2* values were computed from extended regions of interest (ROIs). Good-quality whole-body T2* maps were computed in all volunteers and patients. In healthy volunteers, T2* values were assessed in the cerebral white (58.5+/-4.2 ms) and gray (81.4+/-5.5 ms) matter, liver (34.3+/-7.0 ms), spleen (63.5+/-3.3 ms), kidneys (65.4+/-10.3 ms) and skeletal muscles (~30 ms). The liver presented faster relaxation rates in males as compared to females. One patient (serum ferritin concentration=927 microg/dl) showed shortened T2* values in liver (3.6+/-5.5 ms), spleen (3.1+/-4.8 ms), kidneys (11.1+/-7.1 ms) and muscles (25.1+/-3.4 ms). The second patient (serum ferritin concentration=346 microg/dl) presented reduced T2* values in liver (3.9+/-7.3 ms), spleen (20.1+/-9.8 ms) and kidneys (24.6+/-7.7 ms). The presented technique may find clinical application in the assessment of the iron burden in the entire body, and in monitoring of chelation therapies in patients treated with frequent blood transfusions.  相似文献   

8.
The purpose of this study was to investigate the effects of biophysical factors on the diffusion and the relaxation time T(2) independently. Certain properties of the extracellular and the intracellular space may change radically in pathological conditions resulting in water diffusion changes. A tissue model consisting of red blood cells was studied. The extra- and intracellular spaces were modified osmotically and by suspending medium concentration. Diffusion measurements were evaluated with regard to the effective medium theory. Neither the nature of the protein in the extracellular space nor an increased level of intracellular hydration caused a significant net water diffusion change in the cell suspension. The relaxation time T(2) exhibited very little dependence on the extracellular volume fraction or the concentration or the nature of the protein in the extracellular space. An increased level of intracellular hydration resulted in systematically larger T(2) values. It seems probable that increases in extracellular protein concentrations or in the extent of intracellular hydration do not play a significant role in the diffusion changes detected in pathological conditions. T(2) appears to depend on the level of hydration or the total water content but is seemingly less dependent of the concentration and the nature of the extracellular protein in our model solutions.  相似文献   

9.
Two-dimensional correlation relaxation studies of cement pastes   总被引:2,自引:0,他引:2  
Two-dimensional nuclear magnetic resonance relaxation correlation studies of cement pastes have been performed on a unilateral magnet, the Surface GARField. Through these measurements, the hydration process can be observed by monitoring the evolution of porosity. Characteristic relaxation time distributions have been observed in different cement pastes: fresh white cement, prehydrated white cement and ordinary Portland cement. The observed T(1)/T(2) ratio in these cements has been shown to agree with expectations based on high field values.  相似文献   

10.
The experimental transverse relaxivity r2,exp of protons in water suspensions of spherical SiO2 shelled γFe2O3 nanoparticle clusters of different sizes is analyzed based on existing models. It is shown that r2,exp can be significantly larger than the modelling relaxivity, which may be attributed to nanosphere aggregations.  相似文献   

11.
In this study 2H T2rho DQF NMR spectra of water in MCM-41 were measured. The T2rho double-quantum filtered (DQF) NMR signal is generated by applying a radio frequency (RF) field for various durations and then observed after a monitor RF pulse. It was found that the transfer between different quantum coherences by the couplings during long-duration RF fields (i.e., soft pulses) and that residual quadrupolar interaction dominates the signal decay. Knowledge of coherence transfer during long-RF pulses has special significance for the development of sophisticated multi-quantum NMR experiments especially multi-quantum MRI applications.  相似文献   

12.

Objective

T2 mapping has been used widely in detecting cartilage degeneration in osteoarthritis. Several scanning sequences have been developed in the determination of T2 relaxation times of tissues. However, the derivation of these times may vary from sequence to sequence. This study seeks to evaluate the sequence-dependent differences in T2 quantitation of cartilage, muscle, fat and bone marrow in the knee joint at 3 T.

Methods

Three commercial phantoms and 10 healthy volunteers were studied using 3 T MR. T2 relaxation times of the phantoms, cartilage, muscle, subcutaneous fat and marrow were derived using spin echo (SE), multiecho SE (MESE), fast SE (FSE) with varying echo train length (ETL), spiral and spoiler gradient (SPGR) sequences. The differences between these times were then evaluated using Student's t test. In addition, the signal-to-noise ratio (SNR) efficiency and coefficient of variation of T2 from each sequence were calculated.

Results

The average T2 relaxation time was 36.38±5.76 ms in cartilage and 34.08±6.55 ms in muscle, ranging from 27 to 45 ms in both tissues. The times for subcutaneous fat and marrow were longer and more varying, ranging from 41 to 143 ms and from 42 to 160 ms, respectively. In FSE acquisition, relaxation time significantly increases as ETL increases (P<.05). In cartilage, the SE acquisition yields the lowest T2 values (27.52±3.10 ms), which is significantly lower than those obtained from other sequences (P<.002). T2 values obtained from spiral acquisition (38.27±6.45 ms) were higher than those obtained from MESE (34.35±5.62 ms) and SPGR acquisition (31.64±4.53 ms). These differences, however, were not significant (P>.05).

Conclusion

T2 quantification can be a valuable tool for the diagnosis of degenerative disease. Several different sequences exist to quantify the relaxation times of tissues. Sequences range in scan time, SNR efficiency, reproducibility and two- or three-dimensional mapping. However, when choosing a sequence for quantitation, it is important to realize that several factors affect the measured T2 relaxation time.  相似文献   

13.
The corticospinal tract (CST) appears hyperintense on both T2-weighted images and myelin water maps. Here, an extended multiecho T2 relaxation sequence with echoes out to 1120 ms was used to characterize the longer T2 times present in the CST. The T2 distribution from the CST was compared to other white matter structures in 14 healthy subjects. The intra-/extracellular T2 peak of the CST was broadened relative to other white matter structures and often split into two distinct peaks. In the CST, it appeared that the intracellular and extracellular water environments had unique T2 times, causing the intracellular water peak to be pushed down into the myelin water T2 regime and the extracellular peak to be pushed up to longer T2 times. The conventional myelin water T2 limits of 5-40 ms resulted in an artificial increase in myelin water fraction (MWF), causing the CST to be bright on myelin water images. When the upper limit for MWF was decreased to 25 ms, the CST regions exhibited MWF values similar to those found for adjacent anterior and posterior regions. The CST has unique magnetic resonance characteristics, which should be taken into consideration when being examined, especially when compared to pathological tissue.  相似文献   

14.
The aim of this study was to investigate the utility of the water T(2) values of malignant breast lesions in predicting response after the first and second cycles of neoadjuvant chemotherapy (NAC), both alone and in combination with lesion volumes. Thirty-five patients were scanned before the commencement of chemotherapy and again after the first, second and final treatment cycles. Two methods of obtaining lesion T(2) were used: imaging, where a series of T(2)-weighted images was acquired (T(R)/T(E)=1000/30, 60, 90 and 120 ms), and spectroscopy, where the T(2) value of unsuppressed water signal was determined with a multiecho sequence (T(R)=1.5 s; initial T(E)=35 ms; 64 steps of 2.5 ms; 2 unsuppressed acquisitions per T(E)). Lesion volumes were computed from contrast-enhanced 3D fat-suppressed images. The study found that, using the imaging method of obtaining T(2), the ratio of the product of lesion T(2) and volume after the second cycle of NAC to pretreatment value is a good predictor of ultimate lesion response, defined as a > or =65% reduction in tumor volume after the final treatment cycle, with positive and negative predictive values of 95.5% and 84.6%, respectively.  相似文献   

15.
Previous studies have shown that T2(dagger)-weighted magnetic resonance images acquired using localization by adiabatic selective refocusing (LASER) can provide early tissue contrast following ischemia, possibly due to alterations in microscopic susceptibility within the tissue. The purpose of this study was to make a direct in vivo comparison of T2-, T2(dagger)- and diffusion-weighted image contrast during acute ischemia. Acute middle cerebral artery (MCA) occlusion was attempted in 14 rats using a modified Tamura approach incorporating electrocoagulation of the left MCA. T2(dagger)-weighted LASER images (Echo Time [TE]=108 ms), T2-weighted Carr-Purcell-Meiboom-Gill (CPMG) images (TE=110 ms) and diffusion-weighted images (b value=105 s/mm(2)) were acquired at 4 T within 1.5 h of ischemia onset. Tissue contrast in the MCA territory was quantified for histologically verified ischemic tissue (n=6) and in sham controls (n=4). T2(dagger)-weighted LASER images demonstrated greater contrast compared to the T2-weighted CPMG images, and more focal contrast compared to the diffusion-weighted images, suggesting different contrast mechanisms were involved.  相似文献   

16.
This study compared region of interest (ROI) and voxel-based analysis (VBA) methods to determine the optimal method of myelin water fraction (MWF) analysis. Twenty healthy controls were scanned twice using a multi-echo T2 relaxation sequence and ROIs were drawn in white and grey matter. MWF was defined as the fractional signal from 15 to 40 ms in the T2 distribution. For ROI analysis, the mean intensity of voxels within an ROI was fit using non-negative least squares. For VBA, MWF was obtained for each voxel and the mean and median values within an ROI were calculated. There was a slightly higher correlation between Scan 1 and 2 for the VBA method (R2=0.98) relative to the ROI method (R2=0.95), and the VBA mean square difference between scans was 300% lower, indicating VBA was the most consistent between scans. For the VBA method, mean MWF was found to be more reproducible than median MWF. As the VBA method is more reproducible and gives more options for visualization and analysis of MWF, it is recommended over the ROI method of MWF analysis.  相似文献   

17.
MM Bajaj  M Kasaya 《Pramana》1977,9(3):297-302
Experimental results on the nuclear spin-lattice and nuclear spin-spin relaxation times in the ferromagnetic EuB6 at temperatures below 4·2 K are presented using the external magnetic field,H ext, in the range of 0 ⩽H ext ⩽ 10 kG. Nuclear spin-spin relaxation time computed on the basis of the Suhl-Nakamura process turns out to be 3·2μs, which compares well with the experimental value 11·1μs obtained with the 10 kG magnetic field at 1·7 K. It is found that in the ferromagnetic EuB6,T 1 is approximately 5 × 103 times larger thanT 2 at 1·7 K with the 10 kG magnetic field. Thus the effect ofT 1 onT 2 can be neglected. From the experimental value ofT 2, the value of the homogeneous line broadening is found to be 14 kHz. The corresponding value obtained from the cw method is 175 kHz. This evidently shows the presence of the inhomogeneous line broadening in the cw NMR.  相似文献   

18.
Water protons T1 and T2 relaxation times in samples of whole blood, obtained from healthy people and from patients affected by Macrocytic Anemia on one side and Lymphatic and Myeloid Leukemia on the other, have been measured with the FT NMR technique at 80 Mhz and at 25 °C. No significant difference with respect to the value of the spin lattice relaxation time parameter measured for the healthy control group is experimentally evident in the case of the Macrocytic Anaemia while the spin spin relaxation time increases in magnitude. On the reverse both the leukemic cases present a significant (p < 0.001) increase in the relaxation times with respect to the control group. The experimental relaxation data belonging to the anaemic case show a linear correlation with the red cells volume while that obtained for the two leukaemic cases appear linearly correlated with the total white cell numbers. From the relaxation data an estimate of the amount of water tightly bound to the white cells membrane can be determined which results roughly thirty times lower than that bound to the red cells membrane. In this work is also presented a step by step outline of the water relaxation behavior which starts with the pure water and ends with the water in the whole blood supported by relaxation experiments done on the isolated blood main components.  相似文献   

19.
The objective was to measure the effect of 100% oxygen inhalation on T1 relaxation times in skeletal muscle. Healthy volunteers were scanned using three different MRI protocols while breathing medical air and 100% oxygen. Measurements of T1 were made from regions of interest (ROIs) within various skeletal muscle groups. Dynamic data of subjects breathing a sequence of air-oxygen-air allowed the calculation of characteristic wash-in and -out times for dissolved oxygen in muscle. Contrary to previous findings, a statistically significant decrease in T1 in skeletal muscle was observed due to oxygen inhalation. We report approximate baseline characteristic values for the response of skeletal muscle to oxygen inhalation. This measurement may provide new biomarkers for evaluation of oxygen delivery and consumption in normal and diseased skeletal muscle.  相似文献   

20.
Relaxation rates in the rotating frame (R1rho) and spin-spin relaxation rates (R2) were measured in articular cartilage at various orientations of cartilage layer to the static magnetic field (B0), at various spin locking field strengths and at two different static magnetic field strengths. It was found that R1rho in the deep radial zone depended on the orientation of specimens in the magnet and decreased with increasing the spin locking field strength. In contrast, R1rho values in the transitional zone were nearly independent of the specimen orientation and the spin locking field strength. Measurements of the same specimens at 2.95 and 7.05 T showed an increase of R1rho and most R2 values with increasing B0. The inverse B0 dependence of some R2 values was probably due to a multicomponent character of the transverse magnetization decay. The experiments revealed that the dominant T1rho and T2 relaxation mechanism at B0 < or = 3 T is a dipolar interaction due to slow anisotropic motion of water molecules in the collagen matrix. On average, the contribution of scalar relaxation due to rapid proton exchange in femoral head cartilage at 2.95 T is about 6% or less of the total R1rho at the spin locking field of 1000 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号