首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NMR chemical shifts are highly sensitive probes of local molecular conformation and environment and form an important source of structural information. In this study, the relationship between the NMR chemical shifts of nucleic acids and the glycosidic torsion angle, χ, has been investigated for the two commonly occurring sugar conformations. We have calculated by means of DFT the chemical shifts of all atoms in the eight DNA and RNA mono-nucleosides as a function of these two variables. From the DFT calculations, structures and potential energy surfaces were determined by using constrained geometry optimizations at the BP86/TZ2P level of theory. The NMR parameters were subsequently calculated by single-point calculations at the SAOP/TZ2P level of theory. Comparison of the (1) H and (13) C?NMR shifts calculated for the mono-nucleosides with the shifts determined by NMR spectroscopy for nucleic acids demonstrates that the theoretical shifts are valuable for the characterization of nucleic acid conformation. For example, a clear distinction can be made between χ angles in the anti and syn domains. Furthermore, a quantitative determination of the χ angle in the syn domain is possible, in particular when (13) C and (1) H chemical shift data are combined. The approximate linear dependence of the C1' shift on the χ angle in the anti domain provides a good estimate of the angle in this region. It is also possible to derive the sugar conformation from the chemical shift information. The DFT calculations reported herein were performed on mono-nucleosides, but examples are also provided to estimate intramolecularly induced shifts as a result of hydrogen bonding, polarization effects, or ring-current effects.  相似文献   

2.
The first structure of a 2'-deoxy-2'-fluoro-D-arabinose nucleic acid (2'F-ANA)/RNA duplex is presented. We report the structural characterization by NMR spectroscopy of a small hybrid hairpin, r(GGAC)d(TTCG)2'F-a(GTCC), containing a 2'F-ANA/RNA stem and a four-residue DNA loop. Complete (1)H, (13)C, (19)F, and (31)P resonance assignments, scalar coupling constants, and NOE constraints were obtained from homonuclear and heteronuclear 2D spectra. In the chimeric duplex, the RNA strand adopts a classic A-form structure having C3' endo sugar puckers. The 2'F-ANA strand is neither A-form nor B-form and contains O4' endo sugar puckers. This contrasts strongly with the dynamic sugar conformations previously observed in the DNA strands of DNA/RNA hybrid duplexes. Structural parameters for the duplex, such as minor groove width, x-displacement, and inclination, were intermediate between those of A-form and B-form duplexes and similar to those of DNA/RNA duplexes. These results rationalize the enhanced stability of 2'F-ANA/RNA duplexes and their ability to elicit RNase H activity. The results are relevant for the design of new antisense drugs based on sugar-modified nucleic acids.  相似文献   

3.
Long-range scalar 5J(H1',F) couplings were observed in 5-fluoropyrimidine-substituted RNA. We developed a novel S3E-19F-alpha,beta-edited NOESY experiment for quantitation of these long-range scalar 5J(H1',F) couplings, where the J-couplings can be extracted from inspection of intraresidual (H1',H6) NOE cross-peaks. Quantum chemical calculations were exploited to investigate the relation between scalar couplings and conformations around the glycosidic bond in oligonucleotides. The theoretical dependence of the observed 5J(H1',F) couplings on the torsion angle chi can be described by a generalized Karplus relationship. The corresponding density functional theory (DFT) analysis is outlined. Additional NMR experiments facilitating the resonance assignments of 5-fluoropyrimidine-substituted RNAs are described, and chemical shift changes due to altered shielding in the presence of fluorine-19 (19F) are presented.  相似文献   

4.
Two-bond (13)C-(1)H NMR spin-spin coupling constants ((2)J(CCH)) between C2 and H1 of aldopyranosyl rings depend not only on the relative orientation of electronegative substituents on the C1-C2 fragment but also on the C-O torsions involving the same carbons. The latter dependencies were elucidated theoretically using density functional theory and appropriate model pyranosyl rings representing the four relative configurations at C1 and C2, and a 2-deoxy derivative, to probe the relationship between (2)J(C2,H1) magnitude and sign and the C1-O1 (phi, phi) and C2-O2 (alpha) torsion angles. Related calculations were also conducted for the reverse coupling pathway, (2)J(C1,H2). Computed J-couplings were validated by comparison to experimentally measured couplings. (2)J(CCH) displays a primary dependence on the C-O torsion involving the carbon bearing the coupled proton and a secondary dependence on the C-O torsion involving the coupled carbon. These dependencies appear to be caused mainly by the effects of oxygen lone pairs on the C-H and C-C bond lengths along the C-C-H coupling pathway. New parameterized equations are proposed to interpret (2)J(C1,H2) and (2)J(C2,H1) in aldopyranosyl rings. The equation for (2)J(C2,H1) has particular value as a potential NMR structure constraint for the C1-O1 torsion angle (phi) comprising the glycosidic linkages of oligosaccharides.  相似文献   

5.
We have used NMR and CD spectroscopy to study the conformations of modified oligonucleotides (locked nucleic acid, LNA) containing a conformationally restricted nucleotide (T(L)) with a 2'-O,4'-C-methylene bridge. We have investigated two LNA:RNA duplexes, d(CTGAT(L)ATGC):r(GCAUAUCAG) and d(CT(L)GAT(L)AT(L)GC):r(GCAUAUCAG), along with the unmodified DNA:RNA reference duplex. Increases in the melting temperatures of +9.6 degrees C and +8.1 degrees C per modification relative to the unmodified duplex were observed for these two LNA:RNA sequences. The three duplexes all adopt right-handed helix conformations and form normal Watson-Crick base pairs with all the bases in the anti conformation. Sugar conformations were determined from measurements of scalar coupling constants in the sugar rings and distance information derived from 1H-1H NOE measurements; all the sugars in the RNA strands of the three duplexes adopt an N-type conformation (A-type structure), whereas the sugars in the DNA strands change from an equilibrium between S- and N-type conformations in the unmodified duplex towards more of the N-type conformation when modified nucleotides are introduced. The presence of three modified T(L) nucleotides induces drastic conformational shifts of the remaining unmodified nucleotides of the DNA strand, changing all the sugar conformations except those of the terminal sugars to the N type. The CD spectra of the three duplexes confirm the structural changes described above. On the basis of the results reported herein, we suggest that the observed conformational changes can be used to tune LNA:RNA duplexes into substrates for RNase H: Partly modified LNA:RNA duplexes may adopt a duplex structure between the standard A and B types, thereby making the RNA strand amenable to RNase H-mediated degradation.  相似文献   

6.
The title compound, C17H22O6, has an exocyclic ester group at the hexopyranosyl sugar residue. The carbonyl group shows a conformation that is eclipsed with respect to the adjacent ring C—H bond. The two ester torsion angles are denoted by syn and cis conformations. One of these torsion angles is indicated to have a similar conformation in solution, as analyzed by NMR spectroscopy and a Karplus‐type relationship.  相似文献   

7.
Dithiophosphates are used in many different industrial applications. To explain their functions and properties in these applications, a fundamental understanding on a molecular level is needed. Potassium O, O'-Dibutyldithiophosphate and its anion have been investigated by means of a combination of DFT and (31)P CP/MAS NMR and infrared spectroscopy. Several low-energy conformations were studied by DFT. Three different conformations with significantly different torsion angles of the O-C bond relative to the O-P-O plane were selected for further studies of infrared frequencies and (31)P NMR chemical-shift tensors. A good agreement between theoretical and experimental results was obtained, especially when the IR spectra or (31)P chemical shift tensor parameters of all three conformations were added, indicating that, because of the low energy difference between the conformations, the molecules are rapidly fluctuating between them.  相似文献   

8.
Methyl alpha- and beta-pyranosides of d-glucose and d-galactose 1-4 were prepared containing single sites of (13)C-enrichment at C4, C5, and C6 (12 compounds), and (1)H and (13)C[(1)H] NMR spectra were obtained to determine a complete set of J-couplings ((1)J, (2)J, and (3)J) involving the labeled carbon and nearby protons and carbons within the exocyclic hydroxymethyl group (CH(2)OH) of each compound. In parallel theoretical studies, the dependencies of (1)J, (2)J, and (3)J involving (1)H and (13)C on the C5-C6 (omega) and C6-O6 (theta;) torsion angles in aldohexopyranoside model compounds were computed using density functional theory (DFT) and a special basis set designed to reliably recover the Fermi contact contribution to the coupling. Complete hypersurfaces for (1)J(C5,C6), (2)J(C5,H6)(R), (2)J(C5,H6)(S), (2)J(C6,H5), (2)J(C4,C6), (3)J(C4,H6)(R), (3)J(C4,H6)(S), and (3)J(C6,H4), as well as (2)J(H6)(R)(,H6)(S), (3)J(H5,H6)(R), and (3)J(H5,H6)(S), were obtained and used to parametrize new equations correlating these couplings to omega and/or theta;. DFT-computed couplings were also tested for accuracy by measuring J-couplings in (13)C-labeled 4,6-O-ethylidene derivatives of d-glucose and d-galactose in which values of omega and theta; were constrained. Using a new computer program, Chymesa, designed to utilize multiple J-couplings sensitive to exocyclic CH(2)OH conformation, the ensemble of experimental couplings observed in 1-4 were analyzed to yield preferred rotamer populations about omega and theta;. Importantly, due to the sensitivity of some couplings, most notably (2)J(H6)(R)(,H6)(S), (2)J(C5,H6)(R), and (2)J(C5,H6)(S), to both omega and theta;, unique information on correlated conformation about both torsion angles was obtained. The latter treatment represents a means of evaluating correlated conformation in 1,6-linked oligosaccharides, since psi and theta; are redundant in these linkages. In the latter regard, multiple, redundant scalar couplings originating from both sides of the glycosidic linkage can be used collectively to evaluate conformational correlations between psi/theta; and C5-C6 bond rotamers.  相似文献   

9.
Monte Carlo (MC) structural simulation of short RNA sequences has been carried out by random variations of the nucleotide conformational angles (i.e., phosphodiester chain torsional angles and sugar pucker pseudorotational angles). All of the chemical bond lengths and valence angles remained fixed during the structural simulation, except those of the sugar pucker ring. In this article we present the simulated structures of RNA trimers—r(AAA) and r(AAG)—obtained at 11°C and 70°C. The influence of various initial conformations (selected as starting points in the MC simulations) on the equilibrium conformations has been discussed. The simulated conformational angles have been compared with those estimated by nuclear magnetic resonance (NMR) spectroscopy. For both of the oligonucleotides studied here, the most stable structures are helical conformations with stacked bases, at 11°C and 70°C. However, when the starting point is a stretched chain, it is found that r(AAA) adopts a reverse-stacked structure at low temperature (11°C), in which the A3 base is located between the A1 and A2 bases. Although the energies of these conformations (helical and reverse stacked) are very close to each other, the potential barrier between them is extremely high (close to 30 kcal/mol). This hinders the conformational transition from one structure to the other at a given temperature (and in the course of a same MC simulation). However, it is possible to simulate this structural transition by heating the reverse-stacked structure up to 500°C and cooling down progressively to 70°C and 11°C: Canonical helical structures have been obtained by this procedure. © 1994 by john Wiley & Sons, Inc.  相似文献   

10.
The structure of silk fibroin from a wild silkworm, S. c. ricini, the amino acid sequence of which consists of repeated poly-Ala and Gly-rich regions, was examined by using solution and solid-state NMR methods. The structural transition of the silk fibroin in aqueous solution was monitored by using 13C solution NMR spectroscopy as a function of temperature. The fast exchange with respect to the chemical shift between the helix and coil conformations was observed in the poly-Ala region and the slow conformational change from alpha-helix to random coil was observed for the Gly residue adjacent to the N-terminal Ala residue of the poly-Ala region. The torsion angles of several Ala and Gly residues in the model peptide, GGAGGGYGGDGG(A)12GGA-GDGYGAG, were determined by the conformation-dependent 13C chemical shifts, rotational echo double resonance (REDOR) and 2D spin-diffusion NMR methods. The solid-state NMR analysis leads to the precise silk structure before spinning, where the poly-Ala sequence takes a typical alpha-helix pattern with a tightly winded helical structure at both terminal regions of the poly-Ala sequence. This is expected to stabilize the alpha-helical structure of the poly-Ala region in S. c. ricini silk fibroin from the silkworm.  相似文献   

11.
The effect of hydroxymethyl conformation (gg, gt, and tg rotamers about the C4-C5 bond) on the conformational energies and structural parameters (bond lengths, bond angles, bond torsions) of the 10 envelope forms of the biologically relevant aldopentofuranose, 2-deoxy-beta-D-erythro-pentofuranose (2-deoxy-D-ribofuranose) 2, has been investigated by ab initio molecular orbital calculations at the HF/6-31G level of theory. C4-C5 bond rotation induces significant changes in the conformational energy profile of 2 (2gt and 2tg exhibit one global energy minimum, whereas 2gg exhibits two nearly equivalent energy minima), and structural changes, especially those in bond lengths, are consistent with predictions based on previously reported vicinal, 1,3- and 1,4-oxygen lone pair effects. HF/6-31G-optimized envelope geometries of 2gg were re-optimized using density functional theory (DFT, B3LYP/6-31G), and the resulting structures were used in DFT calculations of NMR spin-spin coupling constants involving 13C (i.e., J(CH) and J(CC) over one, two, and three bonds) in 2gg according to methods described previously. The computed J-couplings were compared to those reported previously in 2gt to assess the effect of C4-C5 bond rotation on scalar couplings within the furanose ring and hydroxymethyl side chain. The results confirm prior predictions of correlations between 2J(CH), 3J(CH), 2J(CC) and 3J(CC), and ring conformation, and verify the usefulness of a concerted application of these couplings (both their magnitudes and signs) in assigning preferred ring and C4-C5 bond conformations in aldopentofuranosyl rings. The new calculated J-couplings in 2gg have particular relevance to related J-couplings in DNA (and RNA indirectly), where the gg rotamer, rather than the gt rotamer, is observed in most native structures. The effects of two additional structural perturbations on 2 were also studied, namely, deoxygenation at C5 (yielding 2,5-dideoxy-beta-D-erythro-pentofuranose 4) and methyl glycosidation at O1 (yielding methyl 2-deoxy-beta-D-erythro-pentofuranoside 5) at the HF/6-31G level. The conformational energy profile of 4 resembles that found for 2gt, not 2gg, indicating that 4 is an inappropriate structural mimic of the furanose ring in DNA. Glycosidation failed to induce differential stabilization of ring conformations containing an axial C1-O1 bond (anomeric effect), contrary to experimental data. The latter discrepancy indicates that either the magnitude of this differential stabilization depends on ring configuration or that solvent effects, which are neglected in these calculations, play a role in promoting this stabilization.  相似文献   

12.
The conformational preference of alpha-l-Rhap-(1-->2)[alpha-l-Rhap-(1-->3)]-alpha-l-Rhap-OMe in solution has been studied by NMR spectroscopy using one-dimensional (1)H,(1)H T-ROESY experiments and measurement of trans-glycosidic (3)J(C,H) coupling constants. Molecular dynamics (MD) simulations with a CHARMM22 type of force field modified for carbohydrates were performed with water as the explicit solvent. The homonuclear cross-relaxation rates, interpreted as effective proton-proton distances, were compared to those obtained from simulation. Via a Karplus torsional relationship, (3)J(C,H) values were calculated from simulation and compared to experimental data. Good agreement was observed between experimental data and the MD simulation, except for one inter-residue T-ROE between protons in the terminal sugar residues. The results show that the trisaccharide exhibits substantial conformational flexibility, in particular along the psi glycosidic torsion angles. Notably, for these torsions, a high degree of correlation (77%) was observed in the MD simulation revealing either psi(2)(+) psi(3)(+) or psi(2)(-)psi(3)(-) states. The simulations also showed that non-exoanomeric conformations were present at the phi torsion angles, but to a limited extent, with the phi(3) state populated to a larger extent than the phi(2) state. Further NMR analysis of the trisaccharide by translational diffusion measurements and (13)C T(1) relaxation experiments quantified global reorientation using an anisotropic model together with interpretation of the internal dynamics via the "model-free" approach. Fitting of the dynamically averaged states to experimental data showed that the psi(2)(+)psi(3)(+) state is present to approximately 49%, psi(2)(-) psi(3)(-) to approximately 39%, and phi(3) (non-exo) to approximately 12%. Finally, using a dynamic and population-averaged model, (1)H,(1)H T-ROE buildup curves were calculated using a full relaxation matrix approach and were found to be in excellent agreement with experimental data, in particular for the above inter-residue proton-proton interaction between the terminal residues.  相似文献   

13.
The three-dimensional structure of a unique polymorph of the anticancer drug paclitaxel (Taxol) is established using solid state NMR (SSNMR) tensor ((13)C & (15)N) and heteronuclear correlation ((1)H-(13)C) data. The polymorph has two molecules per asymmetric unit (Z' = 2) and is thus the first conformational characterization with Z' > 1 established solely by SSNMR. Experimental data are correlated with structure through a series of computational models that extensively sample all conformations. For each computational model, corresponding tensor values are computed to supply comparisons with experimental information which, in turn, establishes paclitaxel's structure. Heteronuclear correlation data at thirteen key positions provide shift assignments to the asymmetric unit for each comparison. The two distinct molecules of the asymmetric unit possess nearly identical baccatin III moieties with matching conformations of the C10 acetyl moiety and, specifically, the torsion angle formed by C30-O-C10-C9. Additionally, both are found to exhibit an extended conformation of the phenylisoserine sidechain at C13 with notable differences in the dihedral angles centered around the rotation axes of O-C13, C2'-C1' and C3'-C2'.  相似文献   

14.
Subtle differences in RNA and DNA duplex geometry could be sensed by the changed stereochemistry at 3'-amino function in the 5-atom thioacetamido linker of thioacetamido-linked nucleic acids and iso-thioacetamido-linked nucleic acids modified oligomers. In contrast to the preferred N-type sugar conformations for either 3'- ribo- or xylo amino nucleosides, predominant S-type sugar conformations were found in the dimers. Although the CD spectral differences for the dimer blocks were found to be identical for those found in phosphodiester linked ribo/xylo dimers, the 5-atom thioactamido linker could reverse the RNA binding selectivity to DNA binding selectivity by the change in configuration at the 3'-amino-substituted sugar.  相似文献   

15.
The effects of bilayer surface charge on the conformation of the phosphocholine group of phosphatidylcholine were investigated using a torsion angle analysis of quadrupolar and dipolar splittings in, respectively, (2)H and (13)C NMR spectra of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) labelled in the phosphocholine group with either deuterons (POPC-alpha-d(2), POPC-beta-d(2) and POPC-gamma-d(9)) or carbon-13 (POPC-alpha-(13)C and POPC-alphabeta-(13)C(2)) and incorporated into magnetically aligned bicelles containing various amounts of either the cationic amphiphile 1,2-dimyristoyl-3-trimethylammoniumpropane (DMTAP) or the anionic amphiphile 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). Three sets of quadrupolar splittings, one from each of the three deuteron labelling positions, and three sets of dipolar splittings ((13)C(alpha)-(31)P, (13)C(alpha)-(13)C(beta), (13)C(beta)-(14)N), were measured at each surface charge, along with the (31)P residual chemical shift anisotropy. The torsion angle analysis assumed fast anisotropic rotation of POPC about its long molecular axis, thus projecting all NMR interactions onto that director axis of motion. Dipolar, quadrupolar and chemical shift anisotropies were calculated as a function of the phosphocholine internal torsion angles by first transforming into a common reference frame affixed to the phosphocholine group prior to motional averaging about the director axis. A comparison of experiment and calculation provided the two order parameters specifying the director orientation relative to the molecule, plus the torsion angles alpha(3), alpha(4) and alpha(5). Surface charge was found to have little effect on the torsion angle alpha(5) (rotations about C(alpha)-C(beta)), but to have large and inverse effects on torsion angles alpha(3) [rotations about P-O(11)] and alpha(4) [rotations about O(11)-C(alpha)], yielding a net upwards tilt of the P-N vector in the presence of cationic surface charge, and a downwards tilt in the presence of anionic surface charge, relative to neutrality.  相似文献   

16.
The computer program PRODIS is used to find low energy conformations of flexible molecules by searching the potential energy surface(s) of one or more torsion angles via rigid rotation. The n-dimensional grid of energy versus torsion angles is then converted to a Boltzman probability distribution, with the probability being represented not as a function of torsion angle, but rather a distance between two atoms. These atoms are chosen by comparison with a known, active analogue in which certain atoms have previously been determined as requirements for drug activity. PRODIS produces a list of low energy conformations, their corresponding interatomic distances and the Boltzman probability for each distance ±0.125, as well as the total probability for each conformation. The user also specifies a target interatomic distance and range (usually derived from a more rigid analogue) for which PRODIS lists all conformations and their Boltzman probability that meet this distance.  相似文献   

17.
The B-form of DNA can populate two different backbone conformations: BI and BII, defined by the difference between the torsion angles ε and ζ (BI = ε-ζ < 0 and BII = ε-ζ > 0). BI is the most populated state, but the population of the BII state, which is sequence dependent, is significant and accumulating evidence shows that BII affects the overall structure of DNA, and thus influences protein-DNA recognition. This work presents a reparametrization of the CHARMM27 additive nucleic acid force field to increase the sampling of the BII form in MD simulations of DNA. In addition, minor modifications of sugar puckering were introduced to facilitate sampling of the A form of DNA under the appropriate environmental conditions. Parameter optimization was guided by quantum mechanical data on model compounds, followed by calculations on several DNA duplexes in the condensed phase. The selected optimized parameters were then validated against a number of DNA duplexes, with the most extensive tests performed on the EcoRI dodecamer, including comparative calculations using the Amber Parm99bsc0 force field. The new CHARMM model better reproduces experimentally observed sampling of the BII conformation, including sampling as a function of sequence. In addition, the model reproduces the A form of the 1ZF1 duplex in 75 % ethanol, and yields a stable Z-DNA conformation of duplex (GTACGTAC) in its crystal environment. The resulting model, in combination with a recent reoptimization of the CHARMM27 force field for RNA, will be referred to as CHARMM36.  相似文献   

18.
19.
Conformational changes are important in RNA for binding and catalysis and understanding these changes is important for understanding how RNA functions. Computational techniques using all-atom molecular models can be used to characterize conformational changes in RNA. These techniques are applied to an RNA conformational change involving a single base pair within a nine base pair RNA duplex. The Adenine-Adenine (AA) non-canonical pair in the sequence 5'GGUGAAGGCU3' paired with 3'PCCGAAGCCG5', where P is Purine, undergoes conformational exchange between two conformations on the timescale of tens of microseconds, as demonstrated in a previous NMR solution structure [Chen, G., et al., Biochemistry, 2006. 45: 6889-903]. The more populated, major, conformation was estimated to be 0.5 to 1.3 kcal/mol more stable at 30 °C than the less populated, minor, conformation. Both conformations are trans-Hoogsteen/sugar edge pairs, where the interacting edges on the adenines change with the conformational change. Targeted Molecular Dynamics (TMD) and Nudged Elastic Band (NEB) were used to model the pathway between the major and minor conformations using the AMBER software package. The adenines were predicted to change conformation via intermediates in which they are stacked as opposed to hydrogen-bonded. The predicted pathways can be described by an improper dihedral angle reaction coordinate. Umbrella sampling along the reaction coordinate was performed to model the free energy profile for the conformational change using a total of 1800 ns of sampling. Although the barrier height between the major and minor conformations was reasonable, the free energy difference between the major and minor conformations was the opposite of that expected based on the NMR experiments. Variations in the force field applied did not improve the misrepresentation of the free energies of the major and minor conformations. As an alternative, the Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approximation was applied to predict free energy differences between the two conformations using a total of 800 ns of sampling. MM-PBSA also incorrectly predicted the major conformation to be higher in free energy than the minor conformation.  相似文献   

20.
Density functional theory (DFT) has been used to investigate the structural dependencies of NMR spin-coupling constants (J-couplings) involving the exchangeable hydroxyl protons of saccharides. 3JHCOH, 3JCCOH, and 2JCOH values were calculated at different positions in model aldopyranosyl rings as a function of one or more torsion angles, and results support the use of a generalized Karplus equation to treat 3JHCOH involving the non-anomeric OH groups. The presence of O5 appended to the H1-C1-O1-H coupling pathway introduces asymmetry in 3JH1,O1H Karplus curves due to internal electronegative substituent effects on the gauche couplings, thus requiring separate equations to treat this coupling. 3JCCOH values depend not only on the C-C-O-H torsion angle but also on the orientation of terminal substituents on the coupled carbon, similar to 3JCOCC studied previously (Bose et al., J. Am. Chem. Soc. 1998, 120, 11158-11173). "In-plane" oxygen increased 3JCCOH by approximately 3-4 Hz, whereas "in-plane" carbon gave more modest enhancements ( approximately 1 Hz). Three Karplus equations were derived for non-anomeric 3JCCOH based on the nature and orientation of substituents on the coupled carbon. Like 3JH1,O1H, 3JC2,O1H is also subject to internal electronegative substituent effects on the gauche couplings, thus necessitating separate equations to treat this coupling. 2JCOH values were found not to be useful probes of C-O torsions as a result of their nonsystematic dependence on these torsions. Experimental measurements of 3JHCOH and 3JCCOH in doubly 13C-labeled methyl beta-lactoside 20 and its constituent 13C-labeled methyl aldopyranosides in H2O/acetone-d6 at -20 degrees C showed that some C-O torsion angles are influenced by molecular context and do not experience complete rotational averaging in solution. A strong bias in the H3-C3-O3-H torsion angle in the Glc residue of 20 favoring a gauche conformation suggests the presence of inter-residue H-bonding between O3HGlc and O5Gal. Quantitative analysis of 3JHCOH and 3JCCOH values in 20 indicates that approximately 85% of the forms in solution have geometries consistent with H-bonding. These results suggest that H-bonding between adjacent and/or remote residues may play a role in dictating preferred glycosidic bond conformation in simple and complex oligosaccharides in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号