首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ab initio method for the calculation of atomic and molecular electronic wave functions is presented. The “Optimized-Basis-Set Multiconfiguration Spin-Coupled” (OBS –MCSC ) method may be viewed either as a multiconfiguration generalization of the spin-coupled approach or as a nonorthogonal variant of the MCSCF method. In addition, the OBS –MCSC method optimizes the basis-set exponential parameters simultaneously with all other variational parameters, through a second-derivative minimization procedure. Explicit analytic expressions for the required first and second derivatives of the energy with respect to all variational parameters are obtained. Test calculations prove the capability of the method to yield compact yet accurate electronic wave functions.© 1993 John Wiley & Sons, Inc.  相似文献   

2.
An ab initio procedure for the calculation of atomic and molecular electronic wave functions, the Optimized-Basis-Set Multi-Configuration Spin-Coupled (OBS-MCSC) method, is generalized by introducing a separate linear combination of spin functions for each configuration, turning it into the OBS-GMCSC method. The ability to use a second-order minimization procedure in the computation of the wave function is maintained through appropriate generalization of the analytic expressions for the first and second derivatives of the energy with respect to the optimization parameters, as is the optional inclusion among the latter of the basis-function exponential parameters. The generalization, a variational improvement of the wave function, strengthens the connection with classical VB theory, of which the method can now be considered an optimized-orbitals variant, while maintaining the link with single-configuration Spin-Coupled theory, of which it may still be considered a multiconfiguration extension. The method can also be viewed as a nonorthogonal variant of the MCSCF approach. To demonstrate its practical feasibility and usefulness, the OBS-GMCSC method is applied to a study of the electronic structure and electron affinity of boron. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
We show that a simple correlated wave function, obtained by applying a Jastrow correlation term to an antisymmetrized geminal power, based upon singlet pairs between electrons, is particularly suited for describing the electronic structure of molecules, yielding a large amount of the correlation energy. The remarkable feature of this approach is that, in principle, several resonating valence bonds can be dealt simultaneously with a single determinant, at a computational cost growing with the number of electrons similar to more conventional methods, such as Hartree-Fock or density functional theory. Moreover we describe an extension of the stochastic reconfiguration method, which was recently introduced for the energy minimization of simple atomic wave functions. Within this extension the atomic positions can be considered as further variational parameters, which can be optimized together with the remaining ones. The method is applied to several molecules from Li(2) to benzene by obtaining total energies, bond lengths and binding energies comparable with much more demanding multiconfiguration schemes.  相似文献   

4.
A compact, yet accurate, and strictly virial‐compliant ab initio electronic wavefunction for ground‐state Li2 is exploited for a study of the molecule's electronic structure and electron density. Symmetry‐breaking problems that emerge at the single‐configuration level are solved in a multiconfigurational spin‐coupled approach that enables simultaneous optimization of angularly correlated “resonating” configurations. Particular emphasis is placed on the accurate determination of the electron density's bifurcation points and of the quadrupole moment as a function of internuclear distance R. Tentative connections are drawn between the R dependence of the electron density's topological structure and quadrupole moment and that of the electronic wavefunction. Computation of the latter constitutes the first application to systems other than isolated atoms of the optimized basis set generalized multiconfiguration spin‐coupled method, which entails use of nonorthogonal orbitals and Slater‐type basis functions with variationally optimized exponential parameters. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 378–397, 2000  相似文献   

5.
We elaborate on the theory for the variational solution of the Schro?dinger equation of small atomic and molecular systems without relying on the Born-Oppenheimer paradigm. The all-particle Schro?dinger equation is solved in a numerical procedure using the variational principle, Cartesian coordinates, parameterized explicitly correlated Gaussian functions with polynomial prefactors, and the global vector representation. As a result, non-relativistic energy levels and wave functions of few-particle systems can be obtained for various angular momentum, parity, and spin quantum numbers. A stochastic variational optimization of the basis function parameters facilitates the calculation of accurate energies and wave functions for the ground and some excited rotational-(vibrational-)electronic states of H(2) (+) and H(2), three bound states of the positronium molecule, Ps(2), and the ground and two excited states of the (7)Li atom.  相似文献   

6.
The implications of orbital symmetry for a configuration's spin function are considered from the fairly general viewpoint required for multiconfiguration wave functions employing nonorthogonal orbitals. A general procedure is derived for the imposition of the spin constraints that may be necessary to ensure a given configuration, or a set of configurations as a whole, exhibit required symmetry properties, thus preventing symmetry contamination of the overall electronic wave function. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 24–31, 2000  相似文献   

7.
We have implemented the excited electronic state calculations for a helium atom by the transcorrelated variational Monte Carlo (TC-VMC) method. In this method, Jastrow-Slater-type wave function is efficiently optimized not only for the Jastrow factor but also for the Slater determinant. Since the formalism for the TC-VMC method is based on the variance minimization, excited states as well as the ground state calculations are feasible. It is found that both the first and the second excitation energies given by TC-VMC are much closer to the experimental data than those given by the variational Monte Carlo method with using the Hartree-Fock orbitals. The successful results in the TC-VMC method are considered to be due to the nodal optimization of the wave functions.  相似文献   

8.
Explicitly correlated Gaussian functions have been used in variational calculations on the ground state of the helium atom. The major problem of this application, as well as in other applications of the explicitly correlated Gaussian functions to compute electronic energies of atoms and molecules, is the optimization of the nonlinear parameters involved in the variational wave function. An effective Newton–Raphson optimization procedure is proposed based on analytic first and second derivatives of the variational functional with respect to the Gaussian exponents. The algorithm of the method and its computational implementation is described. The application of the method to the helium atom shows that the Newton–Raphson procedure leads to a good convergence of the optimization process. © 1994 by John Wiley & Sons, Inc.  相似文献   

9.
Very accurate variational non-relativistic calculations are performed for four higher Rydberg (2)D states (1s(2)nd(1), n = 8,..., 11) of the lithium atom ((7)Li). The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions and finite nuclear mass is used. The exponential parameters of the Gaussians are optimized using the variational method with the aid of the analytical energy gradient determined with respect to those parameters. The results of the calculations allow for refining the experimental energy levels determined with respect to the (2)S 1s(2)2s(1) ground state.  相似文献   

10.
We pursue the development and application of the recently introduced linear optimization method for determining the optimal linear and nonlinear parameters of Jastrow-Slater wave functions in a variational Monte Carlo framework. In this approach, the optimal parameters are found iteratively by diagonalizing the Hamiltonian matrix in the space spanned by the wave function and its first-order derivatives, making use of a strong zero-variance principle. We extend the method to optimize the exponents of the basis functions, simultaneously with all the other parameters, namely, the Jastrow, configuration state function, and orbital parameters. We show that the linear optimization method can be thought of as a so-called augmented Hessian approach, which helps explain the robustness of the method and permits us to extend it to minimize a linear combination of the energy and the energy variance. We apply the linear optimization method to obtain the complete ground-state potential energy curve of the C(2) molecule up to the dissociation limit and discuss size consistency and broken spin-symmetry issues in quantum Monte Carlo calculations. We perform calculations for the first-row atoms and homonuclear diatomic molecules with fully optimized Jastrow-Slater wave functions, and we demonstrate that molecular well depths can be obtained with near chemical accuracy quite systematically at the diffusion Monte Carlo level for these systems.  相似文献   

11.
It is advocated to carry out an optimization procedure, which is based upon the variational method, in such a way that the optimum values of the variational parameters are expressed as functions of physical constants, such as the atomic number, Z. The three stages involved in this treatment are illustrated by the optimization of nine correlated wave functions, which describe the ground states of atomic two-electron systems. An analysis of the Z-expansions of the total energies associated with these functions leads to the concept of a class of variational functions. The performances of functions belonging to the same class differ only marginally, especially at larger values of Z. Consequently, the concept of class may be used to bring some order in the plethora of variational functions. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
We study three wave function optimization methods based on energy minimization in a variational Monte Carlo framework: the Newton, linear, and perturbative methods. In the Newton method, the parameter variations are calculated from the energy gradient and Hessian, using a reduced variance statistical estimator for the latter. In the linear method, the parameter variations are found by diagonalizing a nonsymmetric estimator of the Hamiltonian matrix in the space spanned by the wave function and its derivatives with respect to the parameters, making use of a strong zero-variance principle. In the less computationally expensive perturbative method, the parameter variations are calculated by approximately solving the generalized eigenvalue equation of the linear method by a nonorthogonal perturbation theory. These general methods are illustrated here by the optimization of wave functions consisting of a Jastrow factor multiplied by an expansion in configuration state functions (CSFs) for the C2 molecule, including both valence and core electrons in the calculation. The Newton and linear methods are very efficient for the optimization of the Jastrow, CSF, and orbital parameters. The perturbative method is a good alternative for the optimization of just the CSF and orbital parameters. Although the optimization is performed at the variational Monte Carlo level, we observe for the C2 molecule studied here, and for other systems we have studied, that as more parameters in the trial wave functions are optimized, the diffusion Monte Carlo total energy improves monotonically, implying that the nodal hypersurface also improves monotonically.  相似文献   

13.
The Silverstone–Stuebing variational principle for the discontinuous wave functions of one-electron systems is generalized for many-electron systems. The variational functional of energy takes real or complex value. The condition that it is real is given. Using the generalized variational principle, a multiconfiguration SCF theory for the composite molecular wave function is formulated. According to the theory, we may divide the whole space into space-filling cells, solve the SCF equations in each cell and build up the wave functions of the system by gathering the wave functions obtained in the cells. For use in the basis-set expansion method, the SCF equations are rewritten as matrix forms in which only one- and two-center integrals appear if an expansion center is located in each cell.  相似文献   

14.
We present an implementation for large-scale relativistic electronic structure calculations including spin-dependent contributions and electron correlation in a fully variational procedure. The modular implementation of the double group configuration interaction (CI) program into a multiconfiguration self-consistent-field (MCSCF) code allows for the treatment of large CI expansions in both the spinor optimization step and the post-MCSCF dynamic electron correlation step. As an illustration of the potential of the new code, we calculate the spectroscopic properties of the UO2 molecule where we study the ground state and a few excited states in vertical and adiabatic calculations.  相似文献   

15.
In this work, we consider two conditions required for the nonsingularity of constraints in the time‐dependent variational principle (TDVP) for parametrized wave functions. One is the regularity condition which assures the static nonsingularity of the constraint surface. The other condition is the second‐class condition of constraints which assures the dynamic nonsingularity of the constraint surface with a symplectic metric. For analytic wave functions for complex TDVP‐parameters, the regularity and the second‐class conditions become equivalent. The second‐class condition for expectation values is reduced to the noncommutability of the corresponding quantum operators. The symplectic singularity of the equation of motion of TDVP is also shown to be a local breakdown of the second‐class condition in an extended canonical phase‐space. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
A new direct relativistic four-component Kramers-restricted multiconfiguration self-consistent-field (KR-MCSCF) code for molecules has been implemented. The program is based upon Kramers-paired spinors and a full implementation of the binary double groups (D(2h)(*) and subgroups). The underlying quaternion algebra for one-electron operators was extended to treat two-electron integrals and density matrices in an efficient and nonredundant way. The iterative procedure is direct with respect to both configurational and spinor variational parameters; this permits the use of large configuration expansions and many basis functions. The relativistic minimum-maximum principle is implemented in a second-order restricted-step optimization algorithm, which provides sharp and well-controlled convergence. This paper focuses on the necessary modifications of nonrelativistic MCSCF methodology to obtain a fully variational KR-MCSCF implementation. The general implementation also allows for the use of molecular integrals from a two-component relativistic Hamiltonian as, for example, the Douglas-Kroll-Hess variants. Several sample applications concern the determination of spectroscopic properties of heavy-element atoms and molecules, demonstrating the influence of spin-orbit coupling in MCSCF approaches to such systems and showing the potential of the new method.  相似文献   

17.
Accurate quantum-mechanical nonrelativistic variational calculations are performed for the nine lowest members of the (2)P(o) Rydberg series (1s(2)np(1), n = 2, ..., 10) of the lithium atom. The effect of the finite nuclear mass is included in the calculations allowing for determining the isotopic shifts of the energy levels. The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions. The exponential parameters of the Gaussians are variationally optimized with the aid of the analytical energy gradient determined with respect to those parameters. The calculated state energies are compared with the available experimental data.  相似文献   

18.
The problem of the evaluation of first- and second-order energies by the use of arbitrary variational wave functions is examined in detail for time-independent perturbations as well as for time-dependent perturbations. By using a compact formalism the general formulae to be used for the case of a fully optimized set of variational parameters are readily obtained and the most prominent features are examined. The generality of the approach is tested by showing how some widely used methods are obtained by using particular types of variational wave functions. The case of incompletely optimized sets of variational parameters is examined examined extensively and several approaches at different levels of approximation are proposed. Emphasis is put upon the importance of considering, in the calculation of higher-order energies, the variational parameters which may be of negligible importance, and thus often neglected, in the absence of perturbations.  相似文献   

19.
In this article we report accurate nonrelativistic variational calculations of the ground and two excited states of C(+) ion. We employ extended and well optimized basis sets of all-electron explicitly correlated Gaussians to represent the wave functions of the states. The optimization of the basis functions is performed with a procedure employing the analytic gradient of the energy with respect to the nonlinear parameters of the Gaussians. The calculations explicitly include the effects due to the finite nuclear mass. The calculated transition energies between the three states are compared to the experimentally derived values. Finally, we present expectation values of some small positive and negative powers of the interparticle distances and contact densities.  相似文献   

20.
Summary The suitability of Gaussian basis sets for ab initio calculation of Fermi contact spin densities is established by application to the prototype first-row atoms B-F having open shell p electrons. Small multiconfiguration self-consistent-field wave functions are used to describe relevant spin and orbital polarization effects. Basis sets are evaluated by comparing the results to highly precise numerical grid calculations previously carried out with the same wave function models. It is found that modest contracted Gaussian basis sets developed primarily for Hartree-Fock calculations can give semiquantitative results if augmented by diffuse functions and if further uncontracted in the outer core-inner valence region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号