首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
阴阳极协同作用下对硝基苯酚的电催化降解   总被引:1,自引:0,他引:1  
田玫  王晶  杨丽娟  张晓雪 《应用化学》2012,29(11):1286-1290
利用线性扫描伏安法和恒电流电解法研究了Ti/PbO2电极对于对硝基苯酚(PNP)降解的电催化活性,通过对阳极过程和阴极过程中对硝基苯酚及其降解中间产物的液相色谱测定,研究了阴阳极协同作用下对硝基苯酚电催化降解的历程。 结果表明,Ti/PbO2电极能够有效地电催化降解水溶液中的对硝基苯酚,在35 ℃,初始浓度为1 mmol/L的对硝基苯酚水溶液,恒定电流密度40×10-3 A/cm2,电解240 min,对硝基苯酚转化率为98.6%。 对硝基苯酚电催化氧化降解要经历生成对苯二酚、邻苯二酚、对苯醌、丁烯二酸和草酸,最终变成二氧化碳和水的反应历程,其中对苯二酚为第一步反应的主产物,对苯醌转化为丁烯二酸和丁烯二酸转化为草酸这两步反应是阳极氧化过程的速率控制步骤。 对硝基苯酚在阴极上发生还原反应,还原产物为对氨基苯酚(PAM)。 在无隔膜电解槽中,由于阴极还原产物对氨基苯酚很容易到阳极上发生氧化反应,阴阳两极产生协同作用,因而加速了对硝基苯酚的降解反应。  相似文献   

2.
王京平 《色谱》2004,22(5):562-562
酚类已被列为优先控制的环境污染物,属高毒物质,其中硝基苯酚的3种异构体的分析测定备受关注。目前,已有采用分光光度法[1]、离子色谱法[2]、高效液相色谱法[3]测定的报道,但未查阅到采用气相色谱法对硝基苯酚的3种异构体同时分离和测定的系统研究。本文采用乙酸酐衍生化法对3种酚进行衍生,使之成为酯类进行分离[4],并采用邻苯二甲酸二甲酯作为内标物进行定量分析。1 实验部分1.1 主要仪器与试剂  美国Agilent6890气相色谱仪,氢火焰离子化检测器(FID),HPRev.A.08.01化学工作站;HP 5毛细管柱。邻、间、对硝基苯酚及乙酸酐、甲苯…  相似文献   

3.
郭士元  张爱丽  周集体  吴丹 《电化学》2006,12(3):279-283
应用液相催化复极性流化床电解槽降解处理对硝基酚废水.溶液中的Fe2+离子与O2在阴极还原生的成H2O2形成了Fenton试剂,实验以对硝基酚为降解底物,考察了槽电压、Fe2+浓度及曝气量对模拟废水对硝基酚及COD去除率的影响.结果显示,在pH=3.0,电压30V,Fe2+浓度500 mg.L-1,曝气量0.4 m3.h-1的条件下,对硝基酚及COD均有较高的去除率.  相似文献   

4.
伴随着人类社会生产生活需要,工业污水中酚类物质的存在极易污染表面水、地下水甚至饮用水.然而,传统污水处理工艺无法对其实现完全去除,更因其稳定的化学结构和难降解特性,对生态系统和人类健康构成了巨大威胁.因此,寻求完全去除水体中酚类污染物是目前环境领域中重要的研究课题之一.二氧化钛因具有优越的物理、化学和光学性能,而被广泛应用于污染物降解研究,然而,传统TiO2光催化剂由于可见光吸收弱和光生电荷高复合率,导致污染物降解效率低,尤其是针对难降解有机污染物如酚类难以实现高效的去除.为此,本文通过引入铋纳米粒子作为TiO2单晶的改性剂,通过充分发挥铋纳米粒子的LSPR效应和TiO2单晶结构的高传导率,不仅有效地拓宽了TiO2的光响应范围(~2.8 eV),而且提高了光生电荷的分离效率,导致其优越的光催化行为.酚类污染物的降解实验表明,所合成的Bi-SCTiO2光催化剂在模拟太阳光照射下,能完全去除水体中的苯酚和对硝基酚,克服了现有以TiO2为基础的光催化剂无法实现酚类污染物完全去除的缺点.更重要的是,当使用环境水如自来水或矿泉水配制苯酚溶液,所制备的Bi-SCTiO2光催化剂仍能实现苯酚的高效降解(>98%);即使采用含有大量有机物质和微生物的长江水所配制的苯酚溶液,在模拟太阳光照射下,Bi-SCTiO2光催化剂对苯酚的降解率仍然高达96%.进一步研究发现,在各种无机离子如Na^+,K^+,Ca^2+,Cl^?,HCO3^?或SO4^2?(0.1 mM)的干扰下,制备的Bi-SCTiO2对苯酚降解率仍然高达98%以上.光催化循环实验表明,所制备的Bi-SCTiO2循环四次后,其对苯酚的降解率几乎保持不变,说明Bi-SCTiO2具有极好的循环稳定性.运用ESR和MS等分析手段,确定了酚类污染物降解的中间体结构、形态和降解路径,再结合Bi-SCTiO2催化剂的光电性能和自由基诱捕实验,提出了酚类污染物完全降解的机理.  相似文献   

5.
考察了在玫瑰红(RB)存在下γ-六氯环己烷(γ-HCH)在冰中的光降解.结果表明,光敏剂RB通过其激发态[RB]~*及其产生的~1O_2~*加速了γ-HCH的光降解,RB浓度是影响光降解率最显著的因素;γ-HCH在较低初始浓度下的光敏化降解更快;无机盐离子的种类和浓度可以改变冰表面上类液层(LLL)的比例从而影响γ-HCH的光解.通过分析γ-HCH光降解产物提出了RB存在时冰中γ-HCH的光降解作用机理.  相似文献   

6.
利用吸附相反应技术耦合溶剂热处理过程,制备了可见光响应的La和Yb掺杂的TiO_2-还原石墨烯催化剂。结构表征和模拟海水中的苯酚光降解实验表明,吸附相反应制备后掺杂的稀土离子分散于TiO_2晶格结构中,促进了TiO_2从锐钛矿到金红石的转变从而形成混晶结构,并在催化剂中引入了少量Ti~(3+)离子。而Ti~(3+)的自掺杂作用可以显著提升催化剂的可见光响应和可见光催化活性,光降解5 h后对模拟海水中苯酚最高去除率在80%以上。可见光催化活性的大小是由催化剂中Ti~(3+)含量决定的,掺杂引入的混晶结构越多, Ti~(3+)含量越高,因而催化剂的可见光降解活性也越高。过多稀土离子会聚集在锐钛矿周围抑制晶型转变,减少了催化剂中的Ti~(3+)含量,也降低了催化剂可见光降解活性。  相似文献   

7.
Ta/BDD薄膜电极电化学催化氧化硝基酚   总被引:1,自引:0,他引:1  
高成耀  常明 《物理化学学报》2008,24(11):1988-1994
研究了热丝化学气相沉积法(HFCVD)制备得到钽衬底掺硼金刚石膜电极(Ta/BDD)的物理性质和电势窗口, 并考察了其用于电化学催化氧化硝基酚过程中的性能及各种影响因素. 扫描电镜和拉曼光谱表明, Ta/BDD电极具有良好的物理性能, 通过测试Ta/BDD电势窗口发现, 该电极具有较高的析氧过电位. 在Ta/BDD电化学催化氧化硝基酚过程中, 化学需氧量(COD)和高效液相色谱测试表明, 硝基酚能够有效降解, 电流密度、支持电解液及浓度对降解过程影响较大, 温度影响不明显. 强化寿命实验表明, Ta/BDD电极具有较好的稳定性. 实验结果表明, Ta/BDD电极是一种适于硝基酚降解和COD去除的优良电极.  相似文献   

8.
近年来,一些无机氧化剂在氧化有机物时伴随的化学发光现象引起了分析工作者的广泛兴趣[1,2].NaIO4氧化H2O2会产生弱化学发光,不同的多羟基酚类物质能不同程度地增强这一化学发光行为,据此建立了测定多羟基酚的化学发光法.目前,利用该法测定的酚主要有苯酚[3]、酚的衍生物[4]和连苯三酚[5,6].本文建立的测定连苯三酚的方法检测限较王伦等[3]的利用苯酚对Luminol-H2O2发光体系猝灭作用测定工业废水及Ermiridis[5]以IO4-在碱性介质中直接氧化连苯三酚的检测限低两个数量级,且扩大了测定酚的种类.研究发现,一些非极性有机溶剂对这一化学发光亦有增强和增稳作用,而痕量非极性溶剂由于在水中的溶解性较差,对化学发光的作用尚未受到注意.  相似文献   

9.
研究了离子色谱法同时测定硝基苯光降解的中间产物邻硝基苯酚、间硝基苯酚、对硝基苯酚及硝酸根的分析方法.采用7.5mmol/L的碳酸氢钠,1.5mmol/L的碳酸钠混合溶液为淋洗液,紫外检测波长215nm.回收率在96.8%~101.3%之间;RSD小于1.5%;检出限在8.5×10-4以下.  相似文献   

10.
苯酚在含氯体系中的电化学氧化   总被引:2,自引:0,他引:2  
刘咏  刘丹  赵仕林  赖晶晶 《电化学》2007,13(1):30-34
以Ru-Ir/Ti三元电极作阳极电解处理苯酚废水,研究废水中Cl-初始浓度对处理效果的影响.结果表明,在一定的电解时间内,苯酚的电化学氧化符合一级动力学方程;废水中Cl-的初始浓度越大,苯酚完全被氧化所需的时间也越短,即其表观速率常数越大.苯酚在Cl-体系中降解的中间产物主要有4-氯苯酚,1-氯苯酚,2,4-二氯苯酚,2,6二氯苯酚,2,4,6-三氯苯酚及各种短链脂肪酸和氯代醇等;最终产物是CO2、CHCl2和CHCl3.电解中间体的生成和降解速率随废水中Cl-初始浓度的增加而增大.据此,导出苯酚在含Cl-体系中电化学氧化的反应途径.  相似文献   

11.
水中硝基酚的纳米TiO_2光催化降解   总被引:21,自引:0,他引:21       下载免费PDF全文
以主波长254nm的紫外灯作为光源,研究了锐钛型纳米TiO2对邻硝基苯酚、2,4-二硝基苯酚的光催化降解行为,并与普通TiO2作了对比;结果表明,纳米TiO2表现出很高的光催化活性,催化降解过程符合一级动力学规律。  相似文献   

12.
《Electroanalysis》2006,18(2):195-199
A miniaturized analytical system for the separation and amperometric detection of toxic nitrophenols, based on the coupling of a micromachined capillary electrophoresis (CE) chip with a glassy carbon detector is described. This microsystem enables a rapid (120 s/sample) simultaneous determination of five priority nitrophenolic pollutants (2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol, and 2‐methyl‐4,6‐dinitrophenol). These compounds can be detected down to the 1×10?5 M level using a 15 mM phosphate buffer pH 7.2 (containing 1.3 mM α‐cyclodextrin) as running solution on 77 mm long microchannel by applying a separation voltage of 3000 V and a negative potential of ?0.7 V (vs. Ag /AgCl wire). Applicability to ground water samples was demonstrated.  相似文献   

13.
A three‐phase hollow fiber liquid‐phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1‐octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 μL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H3PO4, pH 3.0; organic solvent, 1‐octanol; acceptor solution, 40 μL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05–0.30 mg/L with r2>0.9900 and LODs were in the range of 0.01–0.04 mg/L with RSDs of 1.25–2.32%. Excellent enrichment factors of up to 398‐folds were obtained. It was found that the partition coefficient (Ka/d) values were high for 2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol and 2,6‐dinitrophenol and that the individual partition coefficients (Korg/d and Ka/org) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.  相似文献   

14.
《Electroanalysis》2004,16(19):1616-1621
The bismuth film electrode (BiFE) is presented for use in both batch voltammetric and flow injection (FI) amperometric detection of some nitrophenols (2‐nitrophenol, 2‐NP; 4‐nitrophenol, 4‐NP; 2,4‐dinitrophenol, 2,4‐DNP). The bismuth film was deposited ex situ (batch measurements) and in‐line (FI) onto a glassy carbon substrate electrode. Batch analysis of the nitrophenols was carried out in 0.04 M Britton Robinson (BR) buffer pH 4, while for FI measurements, a carrier/electrolyte solution composed of 0.1 M BR buffer pH 4 mixed with methanol (20+80, v/v%) was employed to resemble media used in preconcentration/clean‐up and flow separation sample pretreatment procedures. Under batch conditions, the voltammetric behavior of the nitrophenols was examined for dependence on medium pH in the range of 2 to 10. Employing the square‐wave voltammetry mode, the limits of detection were 0.4 μg L?1, 1.4 μg L?1, and 3.3 μg L?1 for 2‐NP, 4‐NP, and 2,4‐DNP, respectively. Under flow conditions, a simple in‐line electrochemical bismuth film renewal procedure was tested and shown to provide very good inter‐ and intra‐electrode reproducibility of the current signals at low μg L?1 analyte concentrations. The limits of detection for 2‐NP, 4‐NP and 2,4‐DNP obtained using FI and amperometric detection at ?1.0 V (vs. Ag/AgCl) were 0.3 μg L?1, 0.6 μg L?1 and 0.7 μg L?1, respectively, with linear ranges extending up to 20 μg L?1. The attractive performance of the BiFE under flow analysis conditions offers great promise with respect to its detection capability and to its use for a prolonged period of time with no need for inconvenient removal of the electrode from the system for mechanical surface treatment.  相似文献   

15.
This work reports the application of screen‐printed electrodes bulk‐modified with bismuth precursors to the voltammetric determination of 2‐nitrophenol (2‐NP), 4‐nitrophenol (4‐NP) and 2,4‐dinitrophenol (2,4‐DNP) in water samples. A bismuth film was formed at the electrode surface via in situ reduction of the precursor compound contained in the electrode matrix by cathodic polarization at ?1.20 V. The formation of bismuth layer at the precursor‐modified electrodes was assessed by cyclic voltammetric (CV) at different pH values and by optical techniques. The target nitrophenols were voltammetrically determined by recording their reduction peaks in the differential pulse (DP) mode. The composition and content of the precursor compounds in the printed ink and the effect of the pH of the supporting electrolyte on the DP reduction currents of the 3 target nitrophenols were studied. The limits of quantification (LOQs) in three water matrices (distilled water, tap water and surface water) were in the range 1.1–2.2 µmol L?1. Using a simple solid‐phase extraction (SPE) procedure with Lichrolut EN cartridges and elution with methanol, a preconcentration factor of 100 was achieved; the LOQs were 0.021, 0.027 and 0.025 µmol L?1 for 2‐NP, 4‐NP and 2,4‐DNP, respectively. The recoveries of samples spiked with the 3 target nitrophenols at two concentration levels (0.04 and 0.1 µmol L?1) were always >87 %.  相似文献   

16.
Equilibrium removal of three substituted nitrophenols, namely 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), by adsorption on yellow bentonite was tested. The batch kinetic data are described by the pseudo-first order, pseudo-second order, and intraparticle diffusion models. Results show that chemisorption processes could be rate limiting in the sorption step. The adsorption equilibrium was modelled by the Langmuir and Freundlich equations. The Langmuir model better represents the equilibrium isotherm data for 2-NP, 4-NP, and 2,4-DNP uptake on yellow bentonite. 4-NP is adsorbed in larger amounts than the disubstituted nitrophenol. Uptake of nitrophenols increases in the order 2-NP < 2,4-DNP < 4-NP.  相似文献   

17.
The photochemical degradation of the fungicide cymoxanil {2-cyano-N-[(ethylamino)carbonyl]-2-(methoxyimino) acetamide} was studied in aqueous buffer solution (pH 5.9+/- 0.1) under UV light and in laboratory conditions. The degradation followed a pseudo- first-order kinetic with significant correlation coefficient. The main photoproducts were separated and tentatively identified by HPLC/UV and HPLC/MS data, as 3-ethyl-4-(methoxyamino)-2,5-dioxo-4-imidazolidinecarbonitrile, 1-ethyl-5-(methoxyimino)-2,4-imidazolidin-2,4-dione, ethylimidazolidinetrione and {[(ethylamino)carbonyl]-amino}oxoacetic acid. A photolysis pathway of cymoxanil is proposed.  相似文献   

18.
The aquatic photochemical behavior of the biocide dichlofluanid has been studied under natural sunlight conditions as well as under artificial solar irradiation in different types of natural waters (sea, river and lake water) as well as in distilled water. In order to examine the effect of dissolved organic matter (DOM), the photodegradation of the tested biocide was investigated also in the presence of various concentrations of humic and fulvic acids. It was found that the photodegradation proceeds via first-order reaction in all cases and that the presence of various concentrations of DOM inhibits the photolysis reaction. Kinetic experiments are monitored with GC–ECD with half-lives varied between 8 and 83 h. The major photodecomposition products identified by GC–MS were dichlorofluoromethane, aniline, and DMSA. Based on this byproduct identification a possible degradation pathway is proposed for the photolysis of dichlofluanid in aqueous media.  相似文献   

19.
Summary Anthraquinone has been found to be a compound occuring frequently in seawater. Excited by solar radiation it acts as one of many natural and man-made photosensitizers and can thus be used as a model substance for the study of sensitized photochemical reactions of environmental chemicals. Experimentally it has been shown to mediate the oxidative photochemical decomposition of aliphatic hydrocarbons which, lacking absorption bands in the solar UV range at sea level, are by themselves photochemically inert. Formaldehyde, smaller amounts of acetaldehyde and acetone as well as a still unidentified carbonyl compound are the principal low molecular weight products generated in the anthraquinone-sensitized photooxidation, with natural as well as artificial sunlight, of straight chain saturated hydrocarbons accommodated in high purity water. Qualitatively the same results were obtained in natural seawater as reaction medium from which particles were removed by glass fiber filtration and organic compounds by adsorption on activated charcoal. The concomittant generation of homologous series of methylketones and terminal alkenes suggest a decomposition mechanism involving cyclic electron rearrangement in a 6-membered transition state. Based on HPLC analysis of their 2,4-dinitrophenylhydrazones, the rates of volatile carbonyl generation in the sensitized photo-oxidation of n-tetradecane was determined in the liquid phase. Also determined was the rate of formaldehyde formation in the gas phase from n-tetradecane and from two Brazilian crude oils. The rates of generation of acetaldehyde and acetone could not be determined in the experiments with crude oils because of irregular changes of concentrations with time. The rate of concentration increase of formaldehyde in the vapour phase over the hydrocarbon surface film was similar to that in the water underneath. The artifical light source was a high pressure xenon lamp whose emission spectrum closely resembles that of natural sunlight at sea level. It was calibrated against the intensity of natural sunlight using pnitroacetophenone/pyridine as binary chemical actinometer.  相似文献   

20.
This study investigated the direct and indirect photochemical degradation of citalopram (CIT), a selective serotonin reuptake inhibitor (SSRI), under natural and artificial solar radiation. Experiments were conducted in a variety of different operating conditions including Milli-Q (MQ) water and natural waters (lake water and municipal WWT effluent), as well as in the presence of natural water constituents (organic matter, nitrate and bicarbonate). Results showed that indirect photolysis can be an important degradation process in the aquatic environment since citalopram photo-transformation in the natural waters was accelerated in comparison to MQ water both under natural and simulated solar irradiation. In addition, to investigate the decontamination of water from citalopram, TiO2-mediated photocatalytic degradation was carried out and the attention was given to mineralization and toxicity evaluation together with the identification of by-products. The photocatalytic process gave rise to the formation of transformation products, and 11 of them were identified by HPLC-HRMS, whereas the complete mineralization was almost achieved after 5 h of irradiation. The assessment of toxicity of the treated solutions was performed by Microtox bioassay (Vibrio fischeri) and in silico tests showing that citalopram photo-transformation involved the formation of harmful compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号