首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the viability of f(R) theories in the framework of the Palatini approach as solutions to the problem of the observed accelerated expansion of the universe. Two physically motivated popular choices for f(R) are considered,: power law, f(R) = β R n , and logarithmic, f(R) = α ln R. Under the Palatini approach, both Lagrangians give rise to cosmological models comprising only standard matter and undergoing a present phase of accelerated expansion. We use the Hubble diagram of type Ia Supernovae and the data on the gas mass fraction in relaxed galaxy clusters to see whether these models are able to reproduce what is observed and to constrain their parameters. It turns out that they are indeed able to fit the data with values of the Hubble constant and of the matter density parameter in agreement with some model independent estimates, but the today deceleration parameter is higher than what is measured in the concordance ΛCDM model.  相似文献   

2.
The polytropic gas model is investigated as an interacting dark energy scenario. The cosmological implications of the model including the evolution of EoS parameter w Λ, energy density ΩΛ and deceleration parameter q are investigated. We show that, depending on the parameter of model, the interacting polytropic gas can behave as a quintessence or phantom dark energy. In this model, the phantom divide is crossed from below to up. The evolution of q in the context of polytropic gas dark energy model represents the decelerated phase at the early time and accelerated phase later. The singularity of this model is also discussed. Eventually, we establish the correspondence between interacting polytropic gas model with tachyon, K-essence and dilaton scalar fields. The potential and the dynamics of these scalar field models are reconstructed according to the evolution of interacting polytropic gas.  相似文献   

3.
We have investigated cosmological models with a self-interacting scalar field and a dissipative matter fluid as the sources of matter. Different variables are expressed in terms of a generating function. Exact solutions are obtained for one particular choice of the generating function. The potential corresponding to this generating function is a standard tree-level potential arising in the perturbative regime in quantum field theory. With suitable choice of parameters, the scale factor in our model exhibits both decelerating behaviour in the early time as well as an accelerating phase at late times. For certain choices of the parameter the solution also exhibits an attractor nature towards an asymptotic de-Sitter universe.  相似文献   

4.
The general form of the anisotropy parameter of the expansion for Bianchi type-III metric is obtained in the presence of a single diagonal imperfect fluid with a dynamically anisotropic equation of state parameter and a dynamical energy density in general relativity. A special law is assumed for the anisotropy of the fluid which reduces the anisotropy parameter of the expansion to a simple form (D μ H-2V-2{\Delta\propto H^{-2}V^{-2}}, where Δ is the anisotropy parameter, H is the mean Hubble parameter and V is the volume of the universe). The exact solutions of the Einstein field equations, under the assumption on the anisotropy of the fluid, are obtained for exponential and power-law volumetric expansions. The isotropy of the fluid, space and expansion are examined. It is observed that the universe can approach to isotropy monotonically even in the presence of an anisotropic fluid. The anisotropy of the fluid also isotropizes at later times for accelerating models and evolves into the well-known cosmological constant in the model for exponential volumetric expansion.  相似文献   

5.
In this article, our aim is to consider inflation, dark energy and dark matter in the framework of a real scalar field. To this end, we use the quintessence approach. We have tried a real scalar field with a specific self-interaction potential in a spacially flat universe. Numerical results indicate that this potential can drive the expansion of the universe in three distinct phases. The first phase behaves as an inflationary expansion. For this stage, setting the scalar field’s initial value to ϕ 0≥1.94 leads to N 3 68\mathcal{N}\geq 68 favored by observation. After the inflationary phase, the scalar field starts an oscillatory behavior which averages to a =0\bar{w}=0 fluid. This stage can be taken as a cold dark matter (p≈0) epoch expected from works on the structure formation issue. Observations and cosmological models indicate that t inf ≈10−35 s and the matter dominated lasts for t m ≈1017 s, hence (\fractmtinf)obs ? 1052(\frac{t_{m}}{t_{inf}})_{obs}\approx10^{52}. We have shown that the present model can satisfy such a constraint. Finally, the scalar field leaves the oscillatory behavior and once again enters a second inflationary stage which can be identified with the recent accelerated expansion of the universe. We have also compared our model with the ΛCDM model and have found a very good agreement between the equation of state parameter of both of models during the DM and DE era.  相似文献   

6.
Among various phenomenological Λ models, a time-dependent model [(L)\dot] ~ H3\dot{\Lambda}\sim H^{3} is selected here to investigate the Λ-CDM cosmology. The model can follow from dynamics, underlying the origin of Λ. Using this model the expressions for the time-dependent equation of state parameter ω and other physical parameters are derived. It is shown that in H 3 model accelerated expansion of the Universe takes place at negative energy density, but with a positive pressure. It has also been possible to obtain the change of sign of the deceleration parameter q during cosmic evolution.  相似文献   

7.
This paper is devoted to study some holographic dark energy models in the context of Chern-Simon modified gravity by considering FRW universe. We analyze the equation of state parameter using Granda and Oliveros infrared cut-off proposal which describes the accelerated expansion of the universe under the restrictions on the parameter α. It is shown that for the accelerated expansion phase \( -1<\omega _{\Lambda }<-\frac {1}{3}\), the parameter α varies according as \(1<\alpha <\frac {3}{2}\). Furthermore, for 0<α<1, the holographic energy and pressure density illustrates phantom-like theory of the evolution when ωΛ<?1. Also, we discuss the correspondence between the quintessence, K-essence, tachyon and dilaton field models and holographic dark energy models on similar fashion. To discuss the accelerated expansion of the universe, we explore the potential and the dynamics of quintessence, K-essence, tachyon and dilaton field models.  相似文献   

8.
The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological models representing massive strings by applying the variation law for generalized Hubble’s parameter that yields a constant value of deceleration parameter. We find that the constant value of deceleration parameter is reasonable for the present day universe. The variation law for Hubble’s parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier (Phys. Rev. D 28:2414, 1983) is used to construct massive string cosmological models for which we assume that the expansion (θ) in the model is proportional to the component s11\sigma^{1}_{1} of the shear tensor sji\sigma^{j}_{i}. This condition leads to A=(BC) m , where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at present epoch which is in good agreement by the results from recent supernovae observations. Some physical and geometric behaviour of the models are also discussed.  相似文献   

9.
The terahertz (THz) frequency radiation production as a result of nonlinear interaction of high intense laser beam with low density ripple in a magnetized plasma has been studied. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate then this difference frequency can be brought in the THz range. Self focusing (filamentation) of a circularly polarized beam propagating along the direction of static magnetic field in plasma is first investigated within extended‐paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre‐existing density ripple to produce a nonlinear current driving the THz radiation. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. The expressions for the laser beam width parameter, the electric field vector of the THz wave have been obtained. For typical laser beam and plasma parameters with the incident laser intensity ≈ 1014 W/cm2, laser beam radius (r0) = 50 μm, laser frequency (ω0) = 1.8848 × 1014rad/s, electron plasma (low density rippled) wave frequency (ω0) = 1.2848 × 1014 rad/s, plasma density (n0) = 5.025 × 1017cm–3, normalized ripple density amplitude (μ)=0.1, the produced THz emission can be at the level of Giga watt (GW) in power (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this paper we study a continuum version of the Potts model, where particles are points in ℝ d , d≥2, with a spin which may take S≥3 possible values. Particles with different spins repel each other via a Kac pair potential of range γ −1, γ>0. In mean field, for any inverse temperature β there is a value of the chemical potential λ β at which S+1 distinct phases coexist. We introduce a restricted ensemble for each mean field pure phase which is defined so that the empirical particles densities are close to the mean field values. Then, in the spirit of the Dobrushin-Shlosman theory (Dobrushin and Shlosman in J. Stat. Phys. 46(5–6):983–1014, 1987), we prove that while the Dobrushin high-temperatures uniqueness condition does not hold, yet a finite size condition is verified for γ small enough which implies uniqueness and exponential decay of correlations. In a second paper (De Masi et al. in Coexistence of ordered and disordered phases in Potts models in the continuum, 2008), we will use such a result to implement the Pirogov-Sinai scheme proving coexistence of S+1 extremal DLR measures.  相似文献   

11.
We discuss a method of determining a modern energy density functional (EDF) in nuclei. We adopt a Skyrme type EDF and fit the Skyrme parameters to an extensive set of experimental data on the ground-state binding energies, radii, and the breathing mode energies of a wide range of nuclei. We further constrain the values of the Skyrme parameters by requiring positive values for the slope of the symmetry energy S, the enhancement factor κ, associated with the isovector giant dipole resonance, and the Landau parameter G 0. This is done within the approaches of Hartree-Fock (HF) and HF with the inclusion of correlation effects, using a simulated-annealing based algorithm forminimizing χ 2.We also present results of HF based random phase approximation for the excitation strength function of the breathing mode and discuss the current status of the nuclear matter incompressibility coefficient.  相似文献   

12.
We have used phase field simulations to study elastic stress-driven phase inversion in which an initial microstructure with a minority phase embedded in a majority phase evolves to one in which the latter becomes embedded in the former. Such phase inversion is possible if the majority phase is elastically stiffer than the minority phase. For a given set of parameters (volume fraction and elastic moduli of the phases), phase inversion occurs at a characteristic microstructural length-scale (? c ). Our results show that ? c is lower for systems with larger mismatch in elastic moduli, and (to a smaller extent) in those with greater elastic anisotropy.  相似文献   

13.
In this paper, we have considered the curved universe which is filled by tachyonic field. We have found the exact solutions for the field, pressure, density, and scale factor and some cosmological parameters. In such universe, we have investigated the role of tachyonic field in different stages of k for the evolution of the universe. Finally we draw the graphs for the scale factor, Hubble’s parameter, energy density, pressure, acceleration parameter, equation of state and potential for the different values of k. Also we obtained the exact form of field which shows that the tachyonic field has the kink form.  相似文献   

14.
15.
We have calculated the potential energy surfaces forN = Z,20Ne-112Ba nuclei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RA1 and TM1 parameter sets are used. The phenomenon of (multiple) shape coextistence is studied and the calculated ground and excited state binding energies, quadrupole deformation parameters and root mean square (rms) charge radii are compared with the available experimental data and other theoretical predictions.  相似文献   

16.
We present the scalar-tensor gravitational theory with an exponential potential in which Pauli metric is regarded as the physical space-time metric. We show that it is essentially equivalent to coupled quintessence (CQ) model. However for baryotropic fluid being radiation there are in fact no coupling between dilatonic scalar field and radiation. We present the critical points for baryotropic fluid and investigate the properties of critical points when the baryotropic matter is specified to ordinary matter. It is possible for all the critical points to be attractors as long as the parameters λ and β satisfy certain conditions. To demonstrate the attractor behaviors of these critical points, We numerically plot the phase plane for each critical point. Finally with the bound on β from the observation and the fact that our universe is undergoing an accelerating expansion, we conclude that present accelerating expansion is not the eventual stage of universe. Moreover, we numerically describe the evolution of the density parameters Ω and the decelerating factor q, and computer the present values of some cosmological parameters, which are consistent with current observational data.  相似文献   

17.
We report the first observation and study of the photon echo in Er3+:LuLiF4. The energy transition is 4 I 15/24 F 9/2 (λ = 6536 Å). The density of ErF3 is 0.025 wt %. The operation temperature is 1.9 K. Measurements were made at low (up to 1200 Oe) and even zero external magnetic fields. We studied the behavior of the photon echo intensity vs. the magnetic field magnitude and direction about the crystal axis C and vs. the laser pulse separation t 12 and observed an exponential growth and then, after a certain plateau, an exponential decrease in the photon echo intensity as a function of magnetic field upon increasing the magnetic field from zero. The parameters describing the exponential growth and decrease are independent of the direction of magnetic field. The value of the magnetic field (~20–200 Oe) at which the echo intensity is maximal and the value of the maximum itself decrease with increasing pulse separation t 12 and the angle Θ between the magnetic field and crystal axis. The echo intensity decreases exponentially with increasing Θ. The parameter describing the exponential decrease is independent of the magnitude of the field. The echo intensity as a function of pulse separation shows exponential decay. The phase relaxation time depends on the magnitude and direction of the magnetic field. T 2 is equal to 202 ± 16 ns at zero magnetic field. A phenomenological formula is suggested, which qualitatively presents the mentioned dependences, and the polarization properties of the backward photon echo in this crystal are studied. Because the ion of trivalent erbium is an optimum data carrier, the above results show that fine control of the multichannel transfer of processed optical information may be achieved by weak magnetic fields.  相似文献   

18.
We examine the nonlinear evolution of two types of spacetime by solving the Hamilton-Jacobi equation by the gradient expansion method to investigate the validity and limitation of the method itself. The first type is the nonlinear evolution of spacetime for an irrotational perfect fluid, and the second type is for an irrotational dust or an scalar field with an exponential potential inn-dimensional space. We find a recursion relation for the generating functional. Taking the comoving coordinate, the three-metric for perfect fluid is found up to the third order. The expression for the three-metric is in agreement with that of Comer et al. but the numerical coefficient is slightly different because of the different choice of coordinate condition. For a scalar field with an exponential potential in higher dimension, inhomogeneities decay during inflationary phase. The (n+1)-dimensional axisymmetric Szekeres solution is easily found as a byproduct.  相似文献   

19.
A nontrivial scalar field configuration of vanishing energy-momentum is reported. These matter configurations have no influence on the metric and therefore they are not be “detected" gravitationally. This phenomenon occurs for a time–dependent nonminimally coupled and self-interacting scalar field on the 2+1 (BTZ) black hole geometry. We conclude that such stealth configurations exist for the static 2+1 black hole for any value of the nonminimal coupling parameter ζ≠0 with a fixed self-interaction potential U ζ(Φ). For the range 0 < ζ≤1/2 potentials are bounded from below and for the range 0 < ζ < 1/4 the stealth field falls into the black hole and is swallowed by it at an exponential rate, without any consequence for the black hole.  相似文献   

20.
In this paper we have obtained some new exact solutions of Einstein’s field equations in a spatially homogeneous and anisotropic Bianchi type-V space-time with perfect fluid distribution along with heat-conduction and decaying vacuum energy density Λ by applying the variation law for generalized Hubble’s parameter that yields a constant value of deceleration parameter. We find that the constant value of deceleration parameter is reasonable for the present day universe. The variation law for Hubble’s parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The cosmological constant Λ is found to be a decreasing function of time and positive which is corroborated by results from recent supernovae Ia observations. Expressions for look-back time-redshift, neoclassical tests (proper distance d(z)), luminosity distance red-shift and event horizon are derived and their significance are described in detail. The physical and geometric properties of spatially homogeneous and anisotropic cosmological models are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号