首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple genetic algorithm for the numerical evaluation of binodal curves in ternary systems polymer-liquid (1)-liquid (2) and polymer (1)-polymer (2)-solvent is presented. The technique exploits a specifically developed restarting technique based on a combined elitist and zooming strategy on the last population at each iteration. The objective function (fitness) is represented by the weighted sum of the squared differences of chemical potentials of the two phases of each component, obtained evaluating first derivatives of Gibbs free energy of the mixture with respect to the number of moles of the components. The method proposed (a) is numerically stable since it does not require the evaluation of first derivatives of the objective function and (b) can be applied in a wide range of cases changing the equation of state. Several comparisons with simplified iterative procedures presented in the past in the technical literature both for mixtures of two polymers with identical characteristics in a solvent and for mixtures of solvent-nonsolvent-polymer with solvent-polymer interaction parameter equal to zero are reported. Finally, a comparison between present results and the "alternating tangent approach" is reported for two technically meaningful binary systems, when a simplified PC-SAFT equation of state is adopted. The comparisons show that reliable results can be obtained by means of the algorithm proposed and suggest that the procedure presented can be used for practical purposes.  相似文献   

2.
We present a simulation method for direct computation of chemical potentials in multicomponent systems. The method involves application of a field to generate spatial gradients in the species number densities at equilibrium, from which the chemical potential of each species is theoretically estimated. A single simulation yields results over a range of thermodynamic states, as in high throughput experiments, and the method remains computationally efficient even at high number densities since it does not involve particle insertion at high densities. We illustrate the method by Monte Carlo simulations of binary hard sphere mixtures of particles with different sizes in a gravitational field. The results of the gradient Monte Carlo method are found to be in good agreement with chemical potentials computed using the classical Widom particle insertion method for spatially uniform systems.  相似文献   

3.
ESCA chemical shifts give a direct insight into the charge redistribution accompanying formation of chemical bonds. This remarkable feature follows directly from a finding that inner-shell binding energies are closely related to the potentials exerted on the nuclei in question. We have provided extensive evidence which conclusively shows that electrostatic potentials (EP), evaluated in the atomic monopole (AM) approximation, by using the self-consistent charge (SCC-MO) densities, reproduce observed ESCA data in a surprisingly successful way. This approach, abbreviated heretofore the SCC-AMEP model, has also a considerable predictive power. The results have usually an accuracy which is placed in between the chemical and moderate precision. Hence, the salient features of the basic ESCA lines are well described within the AMEP approximation. Finally, the role of the relaxation energy is briefly discussed.  相似文献   

4.
The presence of proteolytic enzymes in urine samples, coming from exogenous or endogenous sources, enhances the cleavage of human chorionic gonadotropin (hCG). Moreover, elevated temperatures occurring occasionally during the delayed transportation of sport urine samples, favor the nicking of the hCG molecule. The aim of the current study, funded by the World Anti-Doping Agency (WADA), was the application of a stabilization mixture in athletes’ urine samples to chemically inactivate proteolytic enzymes coming from exogenous or endogenous sources so as to prevent the degradation of hCG. The stabilization mixture applied, already tested for the stabilization of endogenous steroids and recombinant erythropoietin (rEPO), was a combination of antibiotics, antimycotic substances, and protease inhibitors. Incubation experiments were conducted in the presence or absence of the stabilization mixture in urine aliquots spiked with six proteases (first series of experiments) and one microorganism associated with urinary tract infections (UTI) (second series of experiments). Intact hCG levels were evaluated by using the EIAgen Total hCG kit. In the first series of experiments, hCG levels were reduced in the untreated aliquots following incubation at 37 °C. The addition of the chemical stabilization mixture prevented degradation of hCG induced by four of the proteases applied. In the second series of experiments, no significant difference was found in urine inoculated with E. coli, between aliquots treated with chemical mixture and the untreated aliquots. The addition of the proposed chemical stabilization mixture improves the quality of athletes’ urine samples against possible deterioration due to high temperatures or attempts of proteolytic manipulation.  相似文献   

5.
An iterative algorithm is described for finding topological equivalence, ordering, and canonical numbering of vertexes (atoms) in molecular graphs. Like the Morgan algorithm, it is based on extended connectivities but: (i) the latter are used hierarchically, i. e., the discrimination in the next iteration is carried out only for the vertices having the same extended connectivities (ranks) at the previous iteration; (ii) at equal extended connectivities, additional discrimination is introduced by the ranks of adjacent vertices; (iii) there is no “best name” search; (iv) three levels of complexity of chemical structures are distinguished and handled by different procedures. Two schemes of application of HOC procedures are presented: one directed towards a fast canonical numbering for coding systems, and another one yielding levels of topological equivalence allowing a unique topological representation of the molecule with possible applications to similarity search, structure-activity correlations, etc.  相似文献   

6.
Total, difference, and deformation electron densities are calculated from the first principles using the density functional theory and the sublattice method for LiBX (B = Mg, Ca, Zn; X = N, P, As) crystals with the sphalerite structure. The nature and formation features of the chemical bonding caused by a change in the chemical composition are revealed. A weak bond between Li+ ions with X anions enables their displacements in the space between crystal-forming tetrahedral (BX) groups. It is found that Ca–X bonds are mainly ionic and in a series of crystals the ionic covalent Li–B bond is traced.  相似文献   

7.
Deiters, U.K., 1985. A modification of Newton-Raphson algorithm for phase equilibria calculations using numerical differentiation of the Gibbs energy. Fluid Phase Equilibria, 19: 287-293.For the solution of the system of nonlinear equation describing the phase equilibrium conditions in fluid mixtures a modified Newton-Raphson method is proposed, which uses numerical differentiation to obtain the chemical potentials. For binary mixtures the new algorithm a little faster, because the same intermediate results that are required for the chemical potentials are also used for the construction of the Jacobian matrix.  相似文献   

8.
We study the simulation cell size dependence of chemical potential isotherms in subcritical square-well fluids by means of series of canonical ensemble Monte Carlo simulations with increasing numbers of particles, for both three-dimensional bulk systems and two-dimensional planar layers, using Widom-like particle insertion methods. By estimating the corresponding vapor/liquid coexistence densities using a Maxwell-like equal area rule for the subcritical chemical potential isotherms, we are able to study the influence of system size not only on chemical potentials but also on the coexistence properties. The chemical potential versus density isotherms show van der Waals-like loops in the subcritical vapor/liquid coexistence range that exhibit distinct finite size effects for both two- and three-dimensional fluids. Generally, in agreement with recent findings for related studies of Lennard-Jones fluids, the loops shrink with increasing number of particles. In contrast to the subcritical isotherms themselves, the equilibrium vapor/liquid densities show only a weak system size dependence and agree quantitatively with the best-known literature values for three-dimensional fluids. This allows our approach to be used to accurately predict the phase coexistence properties. Our resulting phase equilibrium results for two-dimensional square-well fluids are new. Knowledge concerning finite size effects of square-well systems is important not only for the simulation of thermodynamic properties of simple fluids, but also for the simulation of models of more complex fluids (such as aqueous or polymer fluids) involving square-well interactions.  相似文献   

9.
We outline a hybrid multiscale approach for the construction of ab initio potential energy surfaces (PESs) useful for performing six-dimensional (6D) classical or quantum mechanical molecular dynamics (MD) simulations of diatomic molecules reacting at single crystal surfaces. The algorithm implements concepts from the corrugation reduction procedure, which reduces energetic variation in the PES, and uses neural networks for interpolation of smoothed ab initio data. A novelty sampling scheme is implemented and used to identify configurations that are most likely to be predicted inaccurately by the neural network. This hybrid multiscale approach, which couples PES construction at the electronic structure level to MD simulations at the atomistic scale, reduces the number of density functional theory (DFT) calculations needed to specify an accurate PES. Due to the iterative nature of the novelty sampling algorithm, it is possible to obtain a quantitative measure of the convergence of the PES with respect to the number of ab initio calculations used to train the neural network. We demonstrate the algorithm by first applying it to two analytic potentials, which model the H2/Pt(111) and H2/Cu(111) systems. These potentials are of the corrugated London-Eyring-Polanyi-Sato form, which are based on DFT calculations, but are not globally accurate. After demonstrating the convergence of the PES using these simple potentials, we use DFT calculations directly and obtain converged semiclassical trajectories for the H2/Pt(111) system at the PW91/generalized gradient approximation level. We obtain a converged PES for a 6D hydrogen-surface dissociation reaction using novelty sampling coupled directly to DFT. These results, in excellent agreement with experiments and previous theoretical work, are compared to previous simulations in order to explore the sensitivity of the PES (and therefore MD) to the choice of exchange and correlation functional. Despite having a lower energetic corrugation in our PES, we obtain a broader reaction probability curve than previous simulations, which is attributed to increased geometric corrugation in the PES and the effect of nonparallel dissociation pathways.  相似文献   

10.
The current efficiencies for ferrate(VI) formation under conditions of bubble induced convection with different anolyte compositions were compared. Results using 14 M KOH, 5 M NaOH, 5 M LiOH and a mixture of LiOH and NaOH of constant OH concentration of 5 M at various temperatures and current densities were compared to previous data for 14 M NaOH solution. NaOH gave the best results under all conditions studied.  相似文献   

11.
A series of charge-delocalized carotenoid mono- and dications have been prepared by treatment of selected carotenoids with Br?nsted and Lewis acids. The detailed structures of the carbocations were established by NMR studies in the temperature range from -10 to -20 degrees C. The general strategy for structure elucidation by NMR of several cationic components in a mixture is outlined. Bond type and regions of bond inversion were established, as well as the charge distribution, which was determined from the difference in (13)C chemical shift at each carbon. This method gave a more accurate estimate for the partial charges than by using the Spiesecke-Schneider relationship. The resulting charge distribution was used as models for the structure of charged solitons. These carotenoid cations have the most delocalized charge so far determined, and the monocations represent the first experimental structure determination of positively charged solitons. The soliton width determined here is in good agreement with the results of previous AM1 calculations.  相似文献   

12.
Steady-state potentials of Ir, Ru, and glassy carbon are measured at 500–700°C in eutectic NaCl-KCl-CsCl melts containing a mixture of Ir and Ru chlorides. The Ir and Ru steady-state potentials are more positive than their equilibrium values, due to the alloying in the metal surface layer. In the cathodic deposition of alloys, depolarization is observed. Before the limiting diffusion current, Ir-Ru alloys (solid solutions) are plated as compact layers; at higher current densities, the deposit is a powdered dendritic mixture of individual Ir and Ru crystals, rather than the alloy  相似文献   

13.
We have investigated the structure of HO2 and a series of alkyl peroxyl radicals ROO using a variety of quantum mechanical methods. We first compute the geometries, vibrational frequencies, electronic charge distributions, and spin densities for the series of radicals considered in the gas phase. Significant differences with respect to previous calculations have been pointed out in a few cases. In particular, we show the fundamental importance of electronic correlation when computing net atomic charges and spin densities, which have generally been estimated in the litterature by means of Hartree–Fock SCF electronic densities. Solvation effects on the geometry and electronic structure have been estimated by carrying out self-consistent reaction field computations in a polarizable continuum environment with relative dielectric permittivity equal to that of liquid water. Large electronic polarization is predicted in such conditions. This may be important in order to understand reactive properties of the radicals in different media. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1039–1048, 1999  相似文献   

14.
An ion-interaction high-performance liquid chromatography (HPLC)-diode-array detection method is developed and optimized for the separation of typical antimicrobial agents used in cosmetics and hygiene products. The most used preservatives contain different molecular structures, different functionalities, and are characterized by different chemical properties. Organic acids, alkyl esters of benzoic acids, alkyl p-hydroxy benzoic acids (parabens), phenol derivatives, and carbanilides represent the most used preservatives, and are often present in multicomponent mixtures. In order to develop a multicomponent method to be used in quality control analysis, the ion-interaction reagent reversed-phase HPLC technique seems to be particularly suitable, because it allows for the simultaneous separation of acidic, basic, and neutral species. The experimental conditions of the method are developed by OVAT (one variable at a time) treatment and further optimized by a multivariate approach based on a Simplex algorithm that works on a desirability function targeted to maximize the resolution in a multicomponent mixture. The new method proposed that is able to simultaneously separate fourteen preservatives is applied in the analysis of commercial products.  相似文献   

15.
Several chemical properties which influence the printability for fused filament fabrication 3D‐printing are derived from analyses of commercially available filaments. In preliminary experiments, polymerization conditions are optimized and suitable monomers and selectivity control agents (donors) are selected. An experimental series in which propene is copolymerized with the comonomers 1‐butene and 1‐hexene with an industrial Ziegler–Natta catalyst will be discussed here. The experiments are planned using design of experiments. Based on a split‐plot design, the design is adapted for mixtures and the combination of homo‐ and copolymerization. The observed factors, besides the mixture composition, are hydrogen partial pressure and the amount of donor. The obtained polymers are analyzed by means of high‐temperature size exclusion chromatography, differential scanning calorimetry, and rheology. 1‐Butene copolymers show good printing results and promising properties almost matching the desired ones. The targeted polymer properties are achieved within certain limits. 1‐Hexene copolymers result in lower molecular masses while crystallinity remains slightly higher, which does not match with the desired profile. Beneficial properties are likely to be achieved within a wider factor range, for example, higher comonomer amount and lower hydrogen partial pressure.  相似文献   

16.
在则系综测试粒子Monte Carlo (GCMC)方法模拟常温下空气(以氮气为代表)及其污染物微量有机物(以苯为例)的混合物中各组分的化学势。模拟中,氮气和苯分子采用LJ球型分子势能模型,采用Metropolis抽样及周期边界条件。通过模拟并拟合得到了300.2K、苯的摩尔分数为0.0625,氮气及苯化学势与压力的关联式,以用于狭缝碳孔中该混合物体系的选择性吸附。  相似文献   

17.
A coarse-grained model has been developed for simulating the self-assembly of nonyl-tethered polyhedral oligomeric silsesquioxane (POSS) nanoparticles in solution. A mapping scheme for groups of atoms in the atomistic molecule onto beads in the coarse-grained model was established. The coarse-grained force field consists of solvent-mediated effective interaction potentials that were derived via a structural-based coarse-graining numerical iteration scheme. The force field was obtained from initial guesses that were refined through two different iteration algorithms. The coarse-graining scheme was validated by comparing the aggregation of POSS molecules observed in simulations of the coarse-grained model to that observed in all-atom simulations containing explicit solvent. At 300 K the effective coarse-grained potentials obtained from different initial guesses are comparable to each other. At 400 K the differences between the force fields obtained from different initial guesses, although small, are noticeable. The use of a different iteration algorithm employing identical initial guesses resulted in the same overall effective potentials for bare cube corner bead sites. In both the coarse-grained and all-atom simulations, small aggregates of POSS molecules were observed with similar local packings of the silsesquioxane cages and tether conformations. The coarse-grained model afforded a savings in computing time of roughly two orders of magnitude. Further comparisons were made between the coarse-grained monotethered POSS model developed here and a minimal model developed in earlier work. The results suggest that the interactions between POSS cages are long ranged and are captured by the coarse-grained model developed here. The minimal model is suitable for capturing the local intermolecular packing of POSS cubes at short separation distances.  相似文献   

18.
A model is developed to describe the adsorption and desorption of proteins to and from a surface film under quasi-equilibrium conditions. Starting from Fick's first law of diffusion, an equation for the flux of molecules to a surface is derived assuming a gradient in the chemical potential from the bulk to the surface and a potential barrier due to an existing surface film. Protein molecules are modeled as components with varying surface areas to depict the different orientations of molecules with respect to the film. For concentrated solutions, formation of multilayer protein films is described by allowing components with small minimum surface areas. The thermodynamic analysis is based on Butler's equation for the chemical potentials of the components of a Gibbs surface layer and a first-order model for the nonideality of the surface layer enthalpy and entropy. The model assumes reversible adsorption, consistent with globular proteins that show little denaturation or flexible-chain proteins that reversibly denature at the interface. The model predicts the behavior of five different experiments measuring film properties of the serum protein albumin in quasi-equilibrium and equilibrium conditions at over 2 orders of magnitude in concentration using a single set of parameters. This provides a new framework for analyzing interactions and adsorption of protein films. The key new features of this model are an extension of the classical Smoluchowski analysis to calculate the adsorption and desorption rate, a model of multilayers with decreased molecular areas to allow effective densities greater than a close-packed monolayer, and a concentration-dependent layer thickness.  相似文献   

19.
We present an extension of Hohenberg-Kohn-Sham density functional theory to the domain of complex local potentials and complex electron densities. The approach is applicable to resonance (Siegert) [Phys. Rev. 56, 750 (1939)] states and other scattering and transport problems that can be described by a normalized state of a Hamiltonian containing a complex local potential. Such Hamiltonians are non-Hermitian and their eigenvalues are in general complex, the imaginary part being inversely proportional to the lifetime of the system. The one-to-one correspondence between complex local potentials nu and complex electron densities rho is established provided that the complex variables are sufficiently close to real local potentials and densities of nondegenerate ground states. We show that the exchange-correlation functionals, contributing to the complex energy, are determined through analytic continuation of their ground-state-theory counterparts. This implies that the exchange-correlation effects on the lifetime of a resonance are, under appropriate conditions, already determined by the functionals of the ground-state theory.  相似文献   

20.
We have recently proposed and demonstrated an approach that enables the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra within a single scan. A promising application opened up by this new accelerated form of data acquisition concerns the possibility of monitoring in real time the chemical nature of analytes subject to a continuous flow. The present paper illustrates such potential, with the real-time acquisition of a series of 2D 1H NMR spectra arising from a mixture of compounds subject to a continuous liquid chromatography (LC) separation. This real-time 2D NMR identification of chemicals eluted minutes apart under usual LC-NMR conditions differs from the way in which LC-2D NMR has hitherto been carried out, which relies on stopped-flow modes of operations whereby fractions are first collected and then subject to individual, aliquot-by-aliquot analyses. The real-time LC-2D NMR experiment hereby introduced can be implemented in a straightforward manner using modern commercial LC-NMR hardware, thus opening up immediate possibilities in high-throughput characterizations of complex molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号