首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report quantum wave-packet calculations on the H+H(2) reaction, aimed at resolving the controversy over whether geometric phase (GP) effects can be observed in this reaction. Two sets of calculations are reported of the state-to-state reaction probabilities, and integral and differential cross sections (ICSs and DCSs). One set includes the GP using the vector potential approach of Mead and Truhlar; the other set neglects the phase. We obtain unequivocal agreement with recent results of Kendrick [J. Phys. Chem. A 107, 6739 (2003)], predicting GP effects in the state-to-state reaction probabilities, which cancel exactly on summing the partial waves to yield the ICS. Our results therefore contradict those of Kuppermann and Wu [Chem. Phys. Lett. 349 537 (2001)], which predicted pronounced GP effects in the cross sections. We also agree with Kendrick in predicting that there are no significant GP effects in the full DCS at energies below 1.8 eV, and in the partial (0相似文献   

2.
We present accurate quantum calculations of state-to-state cross sections for the N + OH → NO + H reaction performed on the ground (3)A' global adiabatic potential energy surface of Guadagnini et al. [J. Chem. Phys. 102, 774 (1995)]. The OH reagent is initially considered in the rovibrational state ν = 0, j = 0 and wave packet calculations have been performed for selected total angular momentum, J = 0, 10, 20, 30, 40,...,120. Converged integral state-to-state cross sections are obtained up to a collision energy of 0.5 eV, considering a maximum number of eight helicity components, Ω = 0,...,7. Reaction probabilities for J = 0 obtained as a function of collision energy, using the wave packet method, are compared with the recently published time-independent quantum mechanical one. Total reaction cross sections, state-specific rate constants, opacity functions, and product state-resolved integral cross-sections have been obtained by means of the wave packet method for several collision energies and compared with recent quasi-classical trajectory results obtained with the same potential energy surface. The rate constant for OH(ν = 0, j = 0) is in good agreement with the previous theoretical values, but in disagreement with the experimental data, except at 300 K.  相似文献   

3.
A recent puzzle in nonadiabatic quantum dynamics is that geometric phase (GP) effects are present in the state-to-state opacity functions of the hydrogen-exchange reaction, but cancel out in the state-to-state integral cross sections (ICSs). Here the authors explain this result by using topology to separate the scattering amplitudes into contributions from Feynman paths that loop in opposite senses around the conical intersection. The clockwise-looping paths pass over one transition state (1-TS) and scatter into positive deflection angles; the counterclockwise-looping paths pass over two transition states (2-TS) and scatter into negative deflection angles. The interference between the 1-TS and 2-TS paths thus integrates to a very small value, which cancels the GP effects in the ICS. Quasiclassical trajectory (QCT) calculations reproduce the scattering of the 1-TS and 2-TS paths into positive and negative deflection angles and show that the 2-TS paths describe a direct insertion mechanism. The inserting atom follows a highly constrained "S-bend" path, which allows it to avoid both the other atoms and the conical intersection and forces the product diatom to scatter into high rotational states. By contrast, the quantum 2-TS paths scatter into a mainly statistical distribution of rotational states, so that the quantum 2-TS total ICS is roughly twice the QCT ICS at 2.3 eV total energy. This suggests that the S-bend constraint is relaxed by tunneling in the quantum system. These findings on H+H(2) suggest that similar cancellations or reductions in GP effects are likely in many other reactions.  相似文献   

4.
The state-to-state dynamics of the H+D2 reaction is studied by the reactant-product decoupling method using the double many-body expansion potential energy surface. Two approaches are compared: one uses only the lowest adiabatic sheet while the other employs both coupled diabatic sheets. Rotational distributions for the reaction H+D2 (upsilon = 0, j = 0)-->HD(upsilon' = 3, j')+D are obtained at eight different collision energies between 1.49 and 1.85 eV; no significant difference are found between the two approaches. Initial state-selected total reaction probabilities and integral cross sections are also given for energies ranging from 0.25 up to 2.0 eV with extremely small differences being observed between the two sets of results, thus showing that the nonadiabatic effects in the title reaction are negligible at least for small energies below 2.0 eV.  相似文献   

5.
Quantum state-to-state dynamics for the H + HBr(υ(i) = 0, j(i) =0) reaction was studied on an accurate ab intio potential energy surface for the electronic ground state of BrH(2). Both the H + HBr → H(2) + Br abstraction reaction and the H' + HBr → H'Br + H exchange reaction were investigated up to a collision energy of 2.0 eV. It was found that the abstraction channel is dominant at lower collision energies, while the exchange channel becomes dominant at higher collision energies. The total integral cross section of the abstraction reaction at a collision energy of 1.6 eV was found to be 1.37 A?(2), which is larger than a recent quantum mechanical result (1.06 A?(2)) and still significantly smaller than the experimental value (3 ± 1 A?(2)). Meanwhile, similar to the previous theoretical study, our calculations also predicted much hotter product rotational state distributions than those from the experimental study. This suggests that further experimental investigations are highly desirable to elucidate the dynamic properties of the title reactions.  相似文献   

6.
The quantum mechanical state-to-state rotational excitation cross sections have been computed using the ab initio ground electronic state potential energy surface of the system [M. Mladenovic and S. Schmatz, J. Chem. Phys. 109, 4456 (1998)] computed at coupled-cluster single and double and triple perturbative excitations method using correlation-consistent polarized valence quadruple zeta basis set where the asymptotic potential have been computed using the dipole moment, quadrupole moment, and the molecular polarizability components and fitted to this interaction potential. The anisotropy of the surface has been analyzed in terms of the multipolar expansion coefficients for the rigid-rotor surface. The integral cross sections for rotational excitations have been computed by solving close-coupled equations at very low collision energies (5-200 cm(-1)) and the corresponding rates have been obtained for a range of low temperatures (5-175 K). The j = 0 → j(') = 1 rotational excitation cross section (and rate) is found to be the dominant followed by the j = 0 → j(') = 2 in these collision energies. The close-coupling, coupled-state, and infinite-order sudden approximations coupling calculations have been performed in the energy range of 0.1-1.0 eV using vibrational ground potential. The rotational cross sections have been obtained by performing computationally accurate close-coupling calculations at 0.1 eV using vibrationally averaged potential (ν = 1) and compared with the results of vibrational ground potential.  相似文献   

7.
We present an exact quantum dynamical study and quasi-classical trajectory (QCT) calculations for the exchange and abstraction processes for the H + HS reaction. These calculations were based on a newly constructed high-quality potential energy surface for the lowest triplet state of H(2)S ((3)A"). The ab initio single-point energies were computed using complete active space self-consistent field and multi-reference configuration interaction method with a basis set of aug-cc-pV5Z. The time-dependent wave packet (TDWP) method was used to calculate the total reaction probabilities and integral cross sections over the collision energy (E(col)) range of 0.0-2.0 eV for the reactant HS initially at the ground state and the first vibrationally excited state. It was found that the initial vibrational excitation of HS enhances both abstraction and exchange processes. In addition, a good agreement is found between QCT and TDWP reaction probabilities at the total momentum J = 0 as a function of collision energy for the H + HS (v = 0, j = 0) reaction.  相似文献   

8.
First accurate quantum mechanical scattering calculations have been carried out for the S((3)P)+OH(X?(2)Π)→SO(X?(3)Σ(-))+H((2)S) reaction using a recent ab initio potential energy surface for the ground electronic state, X?(2)A("), of HSO. Total and state-to-state reaction probabilities for a total angular momentum J=0 have been determined for collision energies up to 0.5 eV. A rate constant has been calculated by means of the J-shifting approach in the 10-400 K temperature range. Vibrational and rotational product distributions show no specific behavior and are consistent with a mixture of direct and indirect reaction mechanisms.  相似文献   

9.
Quantum mechanical wave packet calculations are carried out for the H((2)S) + FO((2)II) --> OH((2)II) + F((2)P) reaction on the adiabatic potential energy surface of the ground (3)A' triplet state. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been estimated from the J = 0 results by using J-shifting approximation based on a capture model. Then, the integral cross sections and initial state-selected rate constants have been calculated. The calculations show that the initial state-selected reaction probabilities are dominated by many sharp peaks. The reaction cross section does not manifest any sharp oscillations and the initial state-selected rate constants are sensitive to the temperature.  相似文献   

10.
11.
Time-independent quantum mechanical (TIQM) approach (helicity basis truncated at k = 2) has been used for computing differential and integral cross sections for the exchange reaction H- + D2 (v = 0, j = 0-4) --> HD + D- and D- + H2 (v = 0, j = 0-3) --> HD + H- in three dimensions on an accurate ab initio potential energy surface. It is shown that the j-weighted differential reaction cross section values are in good agreement with the experimental results reported by Zimmer and Linder at four different relative translational energies (Etrans = 0.55, 0.93, 1.16 and 1.48 eV) for (H-, D2) and at one relative translational energy (Etrans = 0.6 eV) by Haufler et al. for both (H-, D2) and (D-, H2) collisions. The j-weighted integral reaction cross section values are in good agreement with the crossed beam measurements by Zimmer and Linder in the Etrans range 0.5-1.5 eV and close to the guided ion beam results by Haufler et al. for (H-, D2) in the range 0.8-1.2 eV. Time-dependent quantum mechanical (TDQM) results obtained using centrifugal sudden approximation are reported in the form of integral reaction cross section values as a function of Etrans in the range 0.3-3.0 eV for both reactions in three dimensions on the same potential energy surface. The TDQM reaction cross section values decline more sharply than the TIQM results with increase in the initial rotational quantum number (j) for the D2 molecules in their ground vibrational state (v = 0) for (H-, D2) collisions. The computed j-weighted reaction cross section values are in good agreement with the experimental results reported by Zimmer and Linder for (H-, D2) collisions and guided ion beam results by Haufler et al. for both (H-, D2) and (D-, H2) collisions for energies below the threshold for electron detachment channel.  相似文献   

12.
The possible existence of a complex-forming pathway for the H+O(2) reaction has been investigated by means of both quantum mechanical and statistical techniques. Reaction probabilities, integral cross sections, and differential cross sections have been obtained with a statistical quantum method and the mean potential phase space theory. The statistical predictions are compared to exact results calculated by means of time dependent wave packet methods and a previously reported time independent exact quantum mechanical approach using the double many-body expansion (DMBE IV) potential energy surface (PES) [Pastrana et al., J. Phys. Chem. 94, 8073 (1990)] and the recently developed surface (denoted XXZLG) by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. The statistical approaches are found to reproduce only some of the exact total reaction probabilities for low total angular momenta obtained with the DMBE IV PES and some of the cross sections calculated at energy values close to the reaction threshold for the XXZLG surface. Serious discrepancies with the exact integral cross sections at higher energy put into question the possible statistical nature of the title reaction. However, at a collision energy of 1.6 eV, statistical rotationally resolved cross sections managed to reproduce the experimental cross sections for the H+O(2)(v=0,j=1)-->OH(v(')=1,j('))+O process reasonably well.  相似文献   

13.
The Li + H2+(upsilon,j) --> LiH(upsilon',j') + H+ reactive scattering has been studied by using quantum real wave-packet method. The state-to-state and state-to-all reaction probabilities for the entitled collision have been calculated. The probabilities show a smooth variation for all initial rotational quantum states. The J-shifting approximation has been employed to estimate the integral cross sections and thermal rate constants have been calculated.  相似文献   

14.
We have measured differential cross sections (DCSs) for the HD (v(')=1,j(')=2,6,10) products of the H+D(2) exchange reaction at five different collision energies in the range 1.48< or =E(coll)< or =1.94 eV. The contribution from the less energetic H atoms formed upon spin-orbit excitation of Br in the photolysis of the HBr precursor is taken into account for two collision energies, E(coll)=1.84 and 1.94 eV, allowing us to disentangle the two different channels. The measured DCSs agree well with new time-dependent quantum-mechanical calculations. As the product rotational excitation increases, the DCSs shift from backward to sideward scattering, as expected. We also find that the shapes of the DCSs show only a small overall dependence on the collision energy, with a notable exception occurring for HD (v(')=1,j(')=2), which appears bimodal at high collision energies. We suggest that this feature results from both direct recoil and indirect scattering from the conical intersection.  相似文献   

15.
Time-dependent wave packet quantum scattering (TWQS) calculations are presented for HD(+) (v = 0 - 3;j(0)=1) + He collisions in the center-of-mass collision energy (E(T)) range of 0.0-2.0 eV. The present TWQS approach accounts for Coriolis coupling and uses the ab initio potential energy surface of Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. For a fixed total angular momentum J, the energy dependence of reaction probabilities exhibits quantum resonance structure. The resonances are more pronounced for low J values and for the HeH(+) + D channel than for the HeD(+) + H channel and are particularly prominent near threshold. The quantum effects are no longer discernable in the integral cross sections, which compare closely to quasiclassical trajectory calculations conducted on the same potential energy surface. The integral cross sections also compare well to recent state-selected experimental values over the same reactant and translational energy range. Classical impulsive dynamics and steric arguments can account for the significant isotope effect in favor of the deuteron transfer channel observed for HD(+)(v<3) and low translational energies. At higher reactant energies, angular momentum constraints favor the proton-transfer channel, and isotopic differences in the integral cross sections are no longer significant. The integral cross sections as well as the J dependence of partial cross sections exhibit a significant alignment effect in favor of collisions with the HD(+) rotational angular momentum vector perpendicular to the Jacobi R coordinate. This effect is most pronounced for the proton-transfer channel at low vibrational and translational energies.  相似文献   

16.
We report state-to-state and total reaction probabilities for J=0 and total reaction probabilities for J=2 and 4 for the title reaction, both for ground-state and initially rovibrationally excited reactants. The results for three different potential energy surfaces are compared and contrasted. The potential energy surfaces employed are the DMBE IV surface by Pastrana et al. [J. Phys. Chem. 94, 8073 (1990)], the surface by Troe and Ushakov (TU) [J. Chem. Phys. 115, 3621 (2001)], and the new XXZLG ab initio surface by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. Our results show that the total reaction probabilities from both the TU and XXZLG surfaces are much smaller in magnitude for collision energies above 1.2 eV compared to the DMBE IV surface. The three surfaces also show different behavior with regards to the effect of initial state excitation. The reactivity is increased on the XXZLG and the TU surfaces and decreased on the DMBE IV surface. Vibrational and rotational product state distributions for the XXZLG and the DMBE IV surface show different behaviors for both types of distributions. Our results show that for energies above 1.25 eV the dynamics on the DMBE IV surface are not statistical. However, there is also evidence that the dynamics on the XXZLG surface are not purely statistical for energies above the onset of the first excited product vibrational state v'=1. The magnitude of the total reaction probability is decreased for J>0 for the DMBE IV and the XXZLG surfaces for ground-state reactants. However, for initially rovibrationally excited reactants, the total reaction probability does not decrease as expected for both surfaces. As a result the total cross section averaged over all Boltzmann accessible rotational states may well be larger than the cross section reported in the literature for j=1.  相似文献   

17.
18.
The quantum wavepacket parallel computational code DIFFREALWAVE is used to calculate state-to-state integral and differential cross sections for the title reaction on the BKMP2 surface in the total energy range of 0.4-1.2 eV with D2 initially in its ground vibrational-rotational state. The role of Coriolis couplings in the state-to-state quantum calculations is examined in detail. Comparison of the results from calculations including the full Coriolis coupling and those using the centrifugal sudden approximation demonstrates that both the energy dependence and the angular dependence of the calculated cross sections are extremely sensitive to the Coriolis coupling, thus emphasizing the importance of including it correctly in an accurate state-to-state calculation.  相似文献   

19.
An accurate potential energy surface for the ground electronic state of SH3 system has been constructed with 41,882 high level ab initio energy points and the neural network fitting method. The time-dependent wave packet method has been used to calculate the first state-to-state differential cross sections for the title reaction up to 1.2 eV in full dimensions, based on the reactant–product decoupling scheme. It is found that the majority of H2S are produced in the ground vibrational state, with a large fraction of available energy for the reaction ending up as product translational motion. The differential cross sections at the threshold energy are dominated by a very narrow peak in the backward direction. With the increase of collision energy, the width of the angular distribution increases considerably, which is a typical feature of a direct reaction via abstract mechanism, similar to the H2 + OH → H2O + H reaction. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号