首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most populated structure of tetrahydrofuran (THF) has been investigated in our previous study using electron momentum spectroscopy (EMS). Because of the relatively low impact energy (600 eV) and low energy resolution (DeltaE = 1.20 eV) in the previous experiment, only the highest occupied molecular orbital (HOMO) of THF was investigated. The present study reports the most recent high-resolution EMS of THF in the valence space for the first time. The binding energy spectra of THF are measured at 1200 and 2400 eV plus the binding energies, respectively, for a series of azimuthal angles. The experimentally obtained binding energy spectra and orbital momentum distributions (MDs) are employed to study the orbital responses of the pseudorotation motion of THF. The outer valence Greens function (OVGF), the OVGF/6-311++G** model, and density function theory (DFT)-based SAOP/et-pVQZ model are employed to simulate the binding energy spectra. The orbital momentum distributions (MDs) are produced using the DFT-based B3LYP/aug-cc-pVTZ model, incorporating thermodynamic population analysis. Good agreement between theory and experiment is achieved. Orbital MDs of valence orbitals exhibit only slight differences with respect to the impact energies at 1200 and 2400 eV, indicating validation of the plane wave impulse approximation (PWIA). The present study has further discovered that the orbital MDs of the HOMO in the low-momentum region (p < 0.70 a.u) change significantly with the pseudorotation angle, phi, giving a v-shaped cross section, whereas the innermost valence orbital of THF does not vary with pseudorotation, revealing a very different bonding mechanism from the HOMO. The present study explores an innovative approach to study pseudorotation of sugar puckering, which sheds a light to study other biological systems with low energy barriers among ring-puckering conformations.  相似文献   

2.
The minimum-energy structures on the torsional potential-energy surface of 1,3-butadiene have been studied quantum mechanically using a range of models including ab initio Hartree-Fock and second-order M?ller-Plesset theories, outer valence Green's function, and density-functional theory with a hybrid functional and statistical average orbital potential model in order to understand the binding-energy (ionization energy) spectra and orbital cross sections observed by experiments. The unique full geometry optimization process locates the s-trans-1,3-butadiene as the global minimum structure and the s-gauche-1,3-butadiene as the local minimum structure. The latter possesses the dihedral angle of the central carbon bond of 32.81 degrees in agreement with the range of 30 degrees-41 degrees obtained by other theoretical models. Ionization energies in the outer valence space of the conformer pair have been obtained using Hartree-Fock, outer valence Green's function, and density-functional (statistical average orbital potentials) models, respectively. The Hartree-Fock results indicate that electron correlation (and orbital relaxation) effects become more significant towards the inner shell. The spectroscopic pole strengths calculated in the Green's function model are in the range of 0.85-0.91, suggesting that the independent particle picture is a good approximation in the present study. The binding energies from the density-functional (statisticaly averaged orbital potential) model are in good agreement with photoelectron spectroscopy, and the simulated Dyson orbitals in momentum space approximated by the density-functional orbitals using plane-wave impulse approximation agree well with those from experimental electron momentum spectroscopy. The coexistence of the conformer pair under the experimental conditions is supported by the approximated experimental binding-energy spectra due to the split conformer orbital energies, as well as the orbital momentum distributions of the mixed conformer pair observed in the orbital cross sections of electron momentum spectroscopy.  相似文献   

3.
The most populated conformer of tetrahydrofuran (C(4)H(8)O) has been diagnosed as the Cs conformer in the present study, jointly using experimental electron momentum spectroscopy (EMS) and quantum mechanics. Our B3LYP/6-311++G** model indicates that the C1 conformation, which is one of the three possible conformations of tetrahydrofuran produced by pseudorotation in the gas phase, is a transition state due to its imaginary frequencies, in agreement with the prediction from a recent ab initio MP2/aug-cc-pVTZ study (J. Chem. Phys. 2005, 122, 204303). The study has identified the fingerprint of the highest occupied molecular orbital (HOMO) of the C(s) (12a') conformer as the most populated conformer. The identification of the C(s) structure, therefore, leads to the orbital-based assignment of the ionization binding energy spectra of tetrahydrofuran for the first time, on the basis of the outer valence Green function OVGF/6-31G* model and the density functional theory (DFT) SAOP/ET-PVQZ model. The present study explores an innovative approach to study molecular stabilities. It also indicates that energetic properties are not always the most appropriate means to study conformer-rich biological systems.  相似文献   

4.
An extensive study, throughout the valence region, of the electronic structure, ionization spectrum, and electron momentum distributions of ethanol is presented, on the ground of a model that focuses on a mixture of the gauche and anti conformers in their energy minimum form, using weight coefficients obtained from thermostatistical calculations that account for the influence of hindered rotations. The analysis is based on accurate calculations of valence one-electron and shakeup ionization energies and of the related Dyson orbitals, using one-particle Green's Function (1p-GF) theory in conjunction with the so-called third-order Algebraic Diagrammatic Construction scheme [ADC(3)]. The confrontation against available UPS (HeI) measurements indicates the presence in the spectral bands of significant conformational fingerprints at outer-valence ionization energies ranging from approximately 14 to approximately 18 eV. The shakeup onset is located at approximately 24 eV, and a shoulder at approximately 14.5 eV in the He I spectrum can be specifically ascribed to the minor anti (C(s)) conformer fraction. Thermally and spherically averaged Dyson orbital momentum distributions are computed for seven resolvable bands in model (e, 2e) ionization spectra at an electron impact energy of 1.2 keV. A comparison is made with results obtained from standard (B3LYP) Kohn-Sham orbitals and EMS measurements employing a high-resolution spectrometer of the third generation. The analysis is qualitatively in line with experiment and reveals a tremendously strong influence of the molecular conformation on the outermost electron momentum distributions. Quantitatively significant discrepancies with experiment can nonetheless be tentatively ascribed to strong dynamical disorder in the gas phase molecular structure.  相似文献   

5.
《Chemical physics》1987,116(3):399-410
The ionization potentials of the valence shell orbitals (up to 40 eV) of triethylamine have been measured by means of the binary (e,2e) technique. Satellite structure, due to transitions to ionic excited states, has been observed in the outer valence shell for binding energies larger than 15 eV. The electron momentum distributions of the valence orbitals have been measured on ionization peaks corresponding to main and satellite transitions. Results are compared with SCF calculations. The electron momentum distribution of the most external orbital, formed mostly by the N 2p lone pair, is discussed in detail.  相似文献   

6.
The four most stable C(s) conformers of glycine have been investigated using a variety of quantum-mechanical methods based on Hartree-Fock theory, density-functional theory (B3LYP and statistical average of orbital potential), and electron propagation (OVGF) treatments. Information obtained from these models were analyzed in coordinate and momentum spaces using dual space analysis to provide insight based on orbitals into the bonding mechanisms of glycine conformers, which are generated by rotation of C-O(H) (II), C-C (III), and C-N (IV) bonds from the global minimum structure (I). Wave functions generated from the B3LYP/TZVP model revealed that each rotation produced a unique set of fingerprint orbitals that correspond to a specific group of outer valence orbitals, generally of a' symmetry. Orbitals 14a', 13a', 12a', and 11a' are identified as the fingerprint orbitals for the C-O(H) (II) rotation, whereas fingerprint orbitals for the C-C (III) bond rotation are located as 16a' [highest occupied molecular orbital (HOMO)], 15a' [next highest molecular occupied molecular orbital (NHOMO)], 14a', and 12a' orbitals. Fingerprint orbitals for IV generated by the combined rotations around the C-C, C-O(H), and C-N bonds are found as 16a', 15a', 14a', 13a', and 11a', as well as in orbitals 2a" and 1a". Orbital 14a' is identified as the fingerprint orbital for all three conformational processes, as it is the only orbital in the outer valence region which is significantly affected by the conformational processes regardless rotation of which bond. Binding energies, molecular geometries, and other molecular properties such as dipole moments calculated based on the specified treatments agree well with available experimental measurements and with previous theoretical calculation.  相似文献   

7.
Molecular orbital signatures of the methyl substituent in L-alanine have been identified with respect to those of glycine from information obtained in coordinate and momentum space, using dual space analysis. Electronic structural information in coordinate space is obtained using ab initio (MP2/TZVP) and density functional theory (B3LYP/TZVP) methods, from which the Dyson orbitals are simulated based on the plane wave impulse approximation into momentum space. In comparison to glycine, relaxation in geometry and valence orbitals in L-alanine is found as a result of the attachment of the methyl group. Five orbitals rather than four orbitals are identified as methyl signatures. That is, orbital 6a in the core shell, orbitals 11a and 12a in the inner valence shell, and orbitals 19a and 20a in the outer valence shell. In the inner valence shell, the attachment of methyl to glycine causes a splitting of its orbital 10a' into orbitals 11a and 12a of L-alanine, whereas in the outer valence shell the methyl group results in an insertion of an additional orbital pair of 19a and 20a. The frontier molecular orbitals, 24a and 23a, are found without any significant role in the methylation of glycine.  相似文献   

8.
A comprehensive study, throughout the valence region, of the electronic structure and electron momentum density distributions of the four conformational isomers of n-pentane is presented. Theoretical (e,2e) valence ionization spectra at high electron impact energies (1200 eV+electron binding energy) and at azimuthal angles ranging from 0 degrees to 10 degrees in a noncoplanar symmetric kinematical setup are generated according to the results of large scale one-particle Green's function calculations of Dyson orbitals and related electron binding energies, using the third-order algebraic-diagrammatic construction [ADC(3)] scheme. The results of a focal point analysis (FPA) of relative conformer energies [A. Salam and M. S. Deleuze, J. Chem. Phys. 116, 1296 (2002)] and improved thermodynamical calculations accounting for hindered rotations are also employed in order to quantitatively evaluate the abundance of each conformer in the gas phase at room temperature and reliably predict the outcome of experiments on n-pentane employing high resolution electron momentum spectroscopy. Comparison with available photoelectron measurements confirms the suggestion that, due to entropy effects, the trans-gauche (tg) conformer strongly dominates the conformational mixture characterizing n-pentane at room temperature. Our simulations demonstrate therefore that experimental measurements of (e,2e) valence ionization spectra and electron momentum distributions would very consistently and straightforwardly image the topological changes and energy variations that molecular orbitals undergo due to torsion of the carbon backbone. The strongest fingerprints for the most stable conformer (tt) are found for the electron momentum distributions associated with ionization channels at the top of the inner-valence region, which sensitively image the development of methylenic hyperconjugation in all-staggered n-alkane chains.  相似文献   

9.
Results of a study of the valence electronic structure of norbornene (C(7)H(10)), up to binding energies of 30 eV, are reported. Experimental electron momentum spectroscopy (EMS) and theoretical Green's function and density functional theory approaches were utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distributions found that, among the tested models, the combination of the Becke-Perdew functional and a polarized valence basis set of triple-zeta quality provides the best representation of the electron momentum distributions for all 19 valence orbitals of norbornene. This experimentally validated model was then used to extract other molecular properties of norbornene (geometry, infrared spectrum). When these calculated properties are compared to corresponding results from independent measurements, reasonable agreement is typically found. Due to the improved energy resolution, EMS is now at a stage to very finely image the effective topology of molecular orbitals at varying distances from the molecular center, and the way the individual atomic components interact with each other, often in excellent agreement with theory. This will be demonstrated here. Green's Function calculations employing the third-order algebraic diagrammatic construction scheme indicate that the orbital picture of ionization breaks down at binding energies larger than about 22 eV. Despite this complication, they enable insights within 0.2 eV accuracy into the available ultraviolet emission and newly presented (e,2e) ionization spectra. Finally, limitations inherent to calculations of momentum distributions based on Kohn-Sham orbitals and employing the vertical depiction of ionization processes are emphasized, in a formal discussion of EMS cross sections employing Dyson orbitals.  相似文献   

10.
The valence-shell electron momentum distributions for 1-butene are measured by electron momentum spectroscopy (EMS) employing non-coplanar symmetric geometry. The experimental electron momentum distributions are compared with the density functional theory (DFT) calculations using different-sized basis sets. Although the two conformers of 1-butene in the gas phase, namely the skew and syn, have very close ionization potentials, the electron momentum distributions, especially in the low momentum region, can show prominent differences for some of the valence orbitals. By comparing the experimental electron momentum profiles with the theoretical ones, the skew conformer is found to be more stable than the syn and their relative abundances at room temperature are estimated to be (69 +/- 6)% and (31 +/- 6)%, respectively. It demonstrates that EMS has the latent potential to study the relative stability of conformers.  相似文献   

11.
We report on the results of an exhaustive study of the valence electronic structure of norbornane (C(7)H(12)), up to binding energies of 29 eV. Experimental electron momentum spectroscopy and theoretical Green's function and density functional theory approaches were all utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distributions found that, among all the tested models, the combination of the Becke-Perdew functional and a polarized valence basis set of triple-zeta quality provides the best representation of the electron momentum distributions for all of the 20 valence orbitals of norbornane. This experimentally validated quantum chemistry model was then used to extract some chemically important properties of norbornane. When these calculated properties are compared to corresponding results from other independent measurements, generally good agreement is found. Green's function calculations with the aid of the third-order algebraic diagrammatic construction scheme indicate that the orbital picture of ionization breaks down at binding energies larger than 22.5 eV. Despite this complication, they enable insights within 0.2 eV accuracy into the available ultraviolet photoemission and newly presented (e,2e) ionization spectra, except for the band associated with the 1a(2) (-1) one-hole state, which is probably subject to rather significant vibronic coupling effects, and a band at approximately 25 eV characterized by a momentum distribution of "s-type" symmetry, which Green's function calculations fail to reproduce. We note the vicinity of the vertical double ionization threshold at approximately 26 eV.  相似文献   

12.
The main purpose of the present work is to predict from benchmark many-body quantum mechanical calculations the results of experimental studies of the valence electronic structure of dimethoxymethane employing electron momentum spectroscopy, and to establish once and for all the guidelines that should systematically be followed in order to reliably interpret the results of such experiments on conformationally versatile molecules. In a first step, accurate calculations of the energy differences between stationary points on the potential energy surface of this molecule are performed using Hartree-Fock (HF) theory and post-HF treatments of improving quality (MP2, MP3, CCSD, CCSD(T), along with basis sets of increasing size. This study focuses on the four conformers of this molecule, namely the trans-trans (TT), trans-gauche (TG), gauche-gauche (G+G+), and gauche-gauche (G+G-) structures, belonging to the C2v, C1, C2, and Cs symmetry point groups, respectively. A focal point analysis supplemented by suited extrapolations to the limit of asymptotically complete basis sets is carried out to determine how the conformational energy differences at 0 K approach the full CI limit. In a second step, statistical thermodynamics accounting for hindered rotations is used to calculate Gibbs free energy corrections to the above energy differences, and to evaluate the abundance of each conformer in the gas phase. It is found that, at room temperature, the G+G+ species accounts for 96% of the conformational mixture characterizing dimethoxymethane. In a third step, the valence one-electron and shake-up ionization spectrum of dimethoxymethane is analyzed according to calculations on the G+G+ conformer alone by means of one-particle Green's function [1p-GF] theory along with the benchmark third-order algebraic diagrammatic construction [ADC(3)] scheme. A complete breakdown of the orbital picture of ionization is noted at electron binding energies above 22 eV. A comparison with available (e,2e) ionization spectra enables us to identify specific fingerprints of through-space orbital interactions associated with the anomeric effect. At last, based on our 1p-GF/ADC(3) assignment of spectral bands, accurate and spherically averaged (e,2e) electron momentum distributions at an electron impact energy of 1200 eV are computed from the related Dyson orbitals. Very significant discrepancies are observed with momentum distributions obtained for several outer-valence levels using standard Kohn-Sham orbitals.  相似文献   

13.
The electron binding energy spectra and momentum profiles of the valence orbitals of difluoromethane, also known as HFC32 (HFC-hydrofluorocarbon) (CH(2)F(2)), have been studied by using a high resolution (e,2e) electron momentum spectrometer, at an impact energy of 1200 eV plus the binding energy, and by using symmetric noncoplanar kinematics. The experimental momentum profiles of the outer valence orbitals and 4a(1) inner valence orbital are compared with the theoretical momentum distributions calculated using Hartree-Fock and density functional theory (DFT) methods with various basis sets. In general, the shapes of the experimental momentum distributions are well described by both the Hartree-Fock and DFT calculations when large and diffuse basis sets are used. However, the result also shows that it is hard to choose the different calculations for some orbitals, including the methods and the size of the basis sets employed. The pole strength of the ionization peak from the 4a(1) inner valence orbital is estimated.  相似文献   

14.
The perfect pairing and molecular orbital methods are compared using minimum bases of Slater-type orbitals for the calculation of properties of HF and two states of HF*. A discussion is given of the calculations of bond lengths and of valence and core ionization potentials.  相似文献   

15.
使用B3LYP/TZVP//B3LYP/aug-cc-pVTZ方法系统研究了饱和烷烃分子CnH2n+2(n=4-6)的轨道电子动量光谱,比较了同分异构体CnH2n+2(n=4-6)对轨道动量分布的影响.结合二维空间分析方法对电子在坐标空间中的密度分布进行了系统的研究.计算结果表明,最内价壳层电荷分布主要由s电子贡献,第二近邻芯价壳层则主要由p电子贡献,而其余的价壳层则为sp杂化.最内价轨道表现出最大的谱线强度并且远大于其它轨道的谱线强度,而且正烷烃的谱线强度要大于异烷烃等同分异构体的谱线强度,表现出了明显的与甲基移动的个数有关的性质.  相似文献   

16.
Core molecular orbital contribution to the electronic structure of N2O isomers has been studied using quantum mechanical density functional theory combined with a plane wave impulse approximation method. Momentum distributions of wave functions for inner shell molecular orbitals of the linear NNO, cyclic and linear NON isomers of N2O are calculated through the (e, 2e) differential cross sections in momentum space. This is possible because this momentum distribution is directly proportional to the modulus squared of the momentum space wave function for the molecular orbital in question. While the momentum distributions of the NNO and cyclic N2O isomers demonstrate strong atomic orbital characteristics in their core space, the outer core molecular orbitals of the linear NON isomer exhibit configuration interactions between them and the valence molecular orbitals. It is suggested that the frozen core approximation breaks down in the prediction of the electronic structure of such an isomer. Core molecular orbital contributions to the electronic structure can alter the order of total energies of the isomers and lead to incorrect conclusions of the stability among the isomers. As a result, full electron calculations should be employed in the study of N2O isomerization.  相似文献   

17.
A complete study of the valence electronic structure and related electronic excitation properties of cyclopentene in its C(s) ground state geometry is presented. Ionization spectra obtained from this compound by means of photoelectron spectroscopy (He I and He II) and electron momentum spectroscopy have been analyzed in details up to electron binding energies of 30 eV using one-particle Green's function (1p-GF) theory along with the outer-valence (OVGF) and the third-order algebraic diagrammatic construction [ADC(3)] schemes. The employed geometries derive from DFT/B3LYP calculations in conjunction with the aug-cc-pVTZ basis set, and closely approach the structures inferred from experiments employing microwave spectroscopy or electron diffraction in the gas phase. The 1p-GF/ADC(3) calculations indicate that the orbital picture of ionization breaks down at electron binding energies larger than approximately 17 eV in the inner-valence region, and that the outer-valence 7a' orbital is also subject to a significant dispersion of the ionization intensity over shake-up states. This study confirms further the rule that OVGF pole strengths smaller than 0.85 foretell a breakdown of the orbital picture of ionization at the ADC(3) level. Spherically averaged (e, 2e) electron momentum distributions at an electron impact energy of 1200 eV that were experimentally inferred from an angular analysis of EMS intensities have been interpreted by comparison with accurate simulations employing ADC(3) Dyson orbitals. Very significant discrepancies were observed with momentum distributions obtained from several outer-valence ionization bands using standard Kohn-Sham orbitals.  相似文献   

18.
The photoelectron circular dichroism that arises in the angular distribution of photoelectrons emitted from the carbonyl group in randomly oriented pure enantiomers of carvone, and a number of carvone derivatives, is investigated by continuum multiple scattering calculations. Core ionization of carbonyl C 1s orbitals is examined for six different isopropenyl tail conformations of carvone. These show clear differences of behavior both between axial and equatorial conformations, and between the three rotational conformers of each. The pronounced dependence of the dichroism on orientation of a tail grouping, itself remote from the localized initial C 1s site, indicates the presence of long range final state photoelectron scattering effects. Analogous data for the outermost valence orbital, partially localized on the carbonyl group, are also presented. The apparently enhanced sensitivity of the dichroism exhibited in this work is discussed in terms of the particular dependence on photoelectron interference effects that is probed by the dichroism measurement and is contrasted with the usual beta parameter and cross section determinations.  相似文献   

19.
The valence-shell binding energy spectra (8–44 eV) and molecular orbital momentum distributions of OCS have been studied by non-coplanar symmetric binary (e,2e) spectroscopy. Existing theoretical binding energy spectra calculated using the many-body 2ph-TDA Green's function (GF) method and using the symmetry-adapted cluster (SAC) on method are compared with the experiment. Intense many-body structure in the measured and calculated binding energy spectra indicates the general breakdown of the independent particle ionization picture. Experimental momentum distributions are compared with those calculated using ab initio SCF wavefunctions of minimal basis set quality and of near Hartree—Fock quality. Excellent agreement between the experimental momentum distributions and those calculated by the near Hartree—Fock wavefunction is obtained for the three innermost valence orbitals: 8σ, 7σ and 6σ. The correct order of the close lying outer-valence 2π and 9σ orbitals is unambiguously identified from the shapes of the measured momentum distributions. Momentum and position contour density maps computed from theoretical wavefunctions of near Hartree—Fock quality are used to interpret the shapes and atomic characters of the observed momentum distributions. The momentum densities of the outermost-valence antibonding π orbitals and of the outermost-valence bonding σ orbitals of the linear triatomic group: CO2, CS2 and OCS are compared respectively with each other. The associated chemical trends are discussed within the existing framework of momentum-space chemical principles.  相似文献   

20.
Intramolecular interactions between fragments of L ‐phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L ‐phenylalanine, benzene and L ‐alanine are studied using density functional theory methods. While fully resolved experimental PES of L ‐phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e1g and 1a2u orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L ‐phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14‐20 eV, rather than outside of this region. This study presents a competent orbital based fragments‐in‐molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D‐PDF technique. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号