首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confined liquids can have properties that are poorly predicted from bulk parameters. We resolve with 0.5 nm resolution the nanoscale perturbations that interfaces cause on fluidity, in thin 3-methylpentane (3MP) films. The films of glassy 3MP are much less viscous at the vacuum-liquid interface and much more viscous at the 3MP-metal interface, compared to the bulk of the film. We find that the viscosity at the interfaces continuously returns to the bulk value over about a 3 nm distance. The amorphous 3MP films are constructed using molecular beam epitaxy on a Pt(111) substrate at low temperatures (<30 K). Ions are gently inserted at specific distances from the substrate with a 1 eV hydronium (D(3)O(+)) or Cs(+) ion beam. The voltage across the film, which is directly proportional to the position of the ions within the film, is monitored electrostatically as the film is heated at a rate of 0.2 K/s. Above the bulk glass transition temperature (T(g)) of 3MP (77 K), the ions are expected to begin to move down through the film. However, ion movement is observed at temperatures as low as 50 K near the vacuum interface, well below the bulk T(g). The fitted kinetics predict that at 85 K, the glass is about 6 orders of magnitude less viscous near the free interface compared to that of the bulk.  相似文献   

2.
Amphiphilic diblock copolymers have the ability to adapt their surface's molecular composition to the hydrophilicity of their environment. In the case of about equal volume fractions of the two polymer blocks, the bulk of these polymers is known to develop a laminar ordering. We report here our investigation of the relationship between bulk ordering and surface morphology/chemical composition in thin films of such an amphiphilic diblock copolymer. Upon annealing in vacuum, the expected lamella ordering in the bulk of the film is observed and we find the morphology of the film surface to be defined by the thickness of the as‐deposited film: If the as‐deposited thickness matches the height of a lamella stack, then the film exhibits a smooth surface. Otherwise, an incomplete lamella forms at the film surface. We show that the coverage of this incomplete layer can be quantified by X‐ray reflectivity. To establish the lamella ordering in the bulk, the film needs to be annealed above the glass temperature of the two blocks. Molecular segregation at the film surface, however, is already occurring at temperatures well below the glass temperature of the two blocks. This indicates that below the glass temperature of the blocks the bulk of the thin film is “frozen,” whereas the polymer chains composing the surface lamella have an increased mobility. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys., 2013 , 51, 1282–1287  相似文献   

3.
In order to study the glass transition of thin film polymer blends, high spatial resolution and temperature sensitivity is needed. In this paper, we emphasize the importance of the calibration of scanning parameters such as load and speed when measuring the glass transition temperature of polymers using lateral force microscopy. Once calibrated, this method is ideal for investigations of heterogeneous samples such as blends and co‐polymers. We present an analysis technique for lateral force imaging using a fast and stable cooling/heating stage. This approach involves mapping the friction forces over a certain area and identifying regions of different frictional properties. The difference in the average friction force can then be plotted as a function of temperature. The friction force is expected to vary around the glass transition. Therefore, the glass transition temperature can be defined as the temperature at which the difference in the average friction force undergoes a slope change. We present investigations of blends using polystyrene mixed with poly(butylmethacrylate). The transition temperatures obtained are in good agreement with the bulk values of corresponding homopolymeric films.  相似文献   

4.
We have investigated thick films from polybutadiene on gold-coated glass using surface plasmon resonance / leaky optical waveguide spectroscopy with the aim of investigating differences in bulk and interphase properties in a single measurement. A broad range of molar masses was studied. Drying under ambient conditions leads to an exponential decay of the film thickness. Subsequent vacuum drying does not result in any further changes in the bulk part of the film but at the polymer-solid interface, indicating the absence of residual solvent. For all molar masses studied, the surface plasmon resonance is observed at angles which are incompatible with the properties of the bulk part of the film. A polymer interphase is thus present next to the gold layer which has a refractive index lower than in the bulk. Using transversal magnetic- and transversal electric polarized light, an optical anisotropy is found in the interphase which is attributed to segment alignment along the interface with gold.  相似文献   

5.
The kinetics and spectral studies of the in situ polyaniline film formation   总被引:2,自引:0,他引:2  
The chemical oxidation of aniline with ammonium persulfate (APS) in an aqueous acidic solution to form polyaniline (PANI) films has been studied using the quartz crystal microbalance (QCM) technique. The kinetics of the film formation was investigated. The reaction exhibited half-order with respect to APS and first-order to aniline. The effect of temperature on the growth rate of PANI films was studied. The activation energy is 39.79 kJ/mol. This is in agreement with the corresponding one determined for the chemical polymerization of PANI in the bulk. The UV-visible spectra of the PANI films grown onto a glass support immersed into the bulk solution were measured. The absorption of the PANI film with time was also studied and compared to the growth of the PANI film thickness using the QCM technique.  相似文献   

6.
Layer-by-layer (LbL) assemblies have attracted much attention for their functional versatility and ease of fabrication. However, characterizing their thermal properties in relation to the film thickness has remained a challenging topic. We have investigated the role of film thickness on the glass transition temperature (T(g)) and coeffecient of thermal expansion for poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) and PEO/poly(methacrylic acid) (PEO/PMAA) hydrogen-bonded LbL assemblies in both bulk and ultrathin films using modulated differential scanning calorimetry (modulated DSC) and temperature-controlled ellipsometry. In PEO/PAA LbL films, a single, well-defined T(g) was observed regardless of film thickness. The T(g) increased by 9 °C relative to the bulk T(g) as film thickness decreased to 30 nm because of interactions between the film and its substrate. In contrast, PEO/PMAA LbL films show a single glass transition only after a thermal cross-linking step, which results in anhydride bonds between PMAA groups. The T(g), within error, was unaffected by film thickness, but PEO/PMAA LbL films of thicknesses below ~2.7 μm exhibited a small amount of PEO crystallization and phase separation for the thermally cross-linked films. The coefficients of thermal expansion of both types of film increased with decreasing film thickness.  相似文献   

7.
氮化碳(graphitic carbon nitride,g-CN)作为一种非金属半导体材料已被广泛应用于多种能源相关领域研究中。目前由于制备高质量g-CN薄膜的困难,大大限制了其在实际器件上的应用。本文中,我们报道了一种可制备高光学质量gCN薄膜的方法:即由三聚氰胺先通过热聚合制备本体g-CN粉末,再由本体g-CN粉末经过气相沉积在ITO导电玻璃或钠钙玻璃基底上制备g-CN薄膜。扫描电子显微镜和原子力显微镜的测量结果表明在ITO玻璃基底上形成的g-CN薄膜形貌结构均一且致密,厚度约为300nm。扫描电镜能量色散能谱和X射线光电子能谱测量结果表明在ITO玻璃基底上制备的g-CN薄膜的化学组成与本体g-CN粉末的化学组成基本一致。同时,我们发现制备的g-CN薄膜和本体g-CN粉末一样在光照射下可以有效降解亚甲基蓝染料。此外,我们还测量了制备的g-CN薄膜的稳态吸收光谱、稳态荧光光谱、荧光寿命和价带谱,并运用吸收光谱和价带谱数据确定了其能带结构。  相似文献   

8.
The Tg depression and kinetic behavior of stacked polystyrene ultrathin films is investigated by differential scanning calorimetry (DSC) and compared with the behavior of bulk polystyrene. The fictive temperature (Tf) was measured as a function of cooling rate and as a function of aging time for aging temperatures below the nominal glass transition temperature (Tg). The stacked ultrathin films show enthalpy overshoots in DSC heating scans which are reduced in height but occur over a broader temperature range relative to the bulk response for a given change in fictive temperature. The cooling rate dependence of the limiting fictive temperature, Tf′, is also found to be higher for the stacked ultrathin film samples; the result is that the magnitude of the Tg depression between the ultrathin film sample and the bulk is inversely related to the cooling rate. We also find that the rate of physical aging of the stacked ultrathin films is comparable with the bulk when aging is performed at the same distance from Tg; however, when conducted at the same aging temperature, the ultrathin film samples show accelerated physical aging, that is, a shorter time is required to reach equilibrium for the thin films due to their depressed Tg values. The smaller distance from Tg also results in a reduced logarithmic aging rate for the thin films compared with the bulk, although this is not indicative of longer relaxation times. The DSC heating curves obtained as a function of cooling rate and aging history are modeled using the Tool-Narayanaswamy-Moynihan model of structural recovery; the stacked ultrathin film samples show lower β values than the bulk, consistent with a broader distribution of relaxation times. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2741–2753, 2008  相似文献   

9.
We have performed molecular dynamics simulations of glassy trehalose with various amounts of glycerol in order to explore the tendency for glycerol to antiplasticize the glass. We find that below a temperature of 300 K, the average density of the system containing 5%(wt) glycerol is larger than that of the pure trehalose system; the glass transition temperature is decreased, and the elastic constants are essentially unchanged. Taken together, these phenomena are indicative of mild antiplasticization, a type of behavior generally observed in polymeric systems. We have calculated the local elastic constants in our glassy materials and, consistent with previous simulations on a coarse-grained polymer, we find evidence of domains having negative elastic moduli. We have explored the ability of various measures of the Debye-Waller factor u(2) to predict the stiffness of our systems in terms of their elastic constants. We find that u(2) is indeed correlated with the behavior of the bulk elastic constants. On a local level, a correlation exists between the local moduli and u(2); however, that correlation is not strong enough to arrive at conclusive statements about the local elastic properties.  相似文献   

10.
We performed molecular dynamics simulations of the low-molecular weight organic glass former ortho-terphenyl in bulk and freestanding films. The main motivation is to provide molecular insight into the confinement effect without explicit interfaces. Based on earlier models of ortho-terphenyl we developed an atomistic model for bulk simulations. The model reproduces literature data both from simulations and experiments starting from specific volume and diffusivity to mean square displacement and radial distribution functions. After characterizing the bulk model we form freestanding films by the elongation and expansion method. These films give us the opportunity to study the dynamical heterogeneity near the glass transition through in-plane mobility and reorientation dynamics. We finally compare the model in bulk and under confinement. We found qualitatively a lower glass transition temperature for the freestanding film compared to the bulk.  相似文献   

11.
The motivation of this work is to provide reliable and accurate modeling studies of the physical (surface, thermal, mechanical and gas diffusion) properties of chitosan (CS) polymer. Our computational efforts have been devoted to make a comparison of the structural bulk properties of CS with similar type of polymers such as chitin and cellulose through cohesive energy density, solubility parameter, hydrogen bonding, and free volume distribution calculations. Atomistic modeling on CS polymer using molecular mechanics (MM) and molecular dynamics (MD) simulations has been carried out in three dimensionally periodic and effective two dimensionally periodic condensed phases. From the equilibrated structures, surface energies were computed. The equilibrium structure of the films shows an interior region of mass density close to the value in the bulk state. Various components of energetic interactions have been examined in detail to acquire a better insight into the interactions between bulk structure and the film surface. MD simulation (NPT ensemble) has also been used to obtain polymer specific volume as a function of temperature. It is demonstrated that these VT curves can be used to locate the volumetric glass transition temperature (Tg) reliably. The mechanical properties of CS have been obtained using the strain deformation method. Diffusion coefficients of O2, N2, and CO2 gas molecules at 300 K in CS have been estimated. The calculated properties of CS are comparable with the experimental values reported in the literature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1260–1270, 2007  相似文献   

12.
Molecular dynamics simulations for nanometer scale polyethylene (PE) particles generated with up to 12000 atoms are presented to gain insight into some thermodynamic properties of ultra fine polymer powders. By computing molecular volume and total energy as a function of temperature, we obtained melting point, glass transition temperature, and heat capacity. The results of our simulations predict an interesting reduction of the melting point in comparison with the PE bulk system.  相似文献   

13.
The scanning force microscope (SFM) was used to investigate the temperature dependent micro mechanical properties of polymethylmethacrylate (PMMA) films with a thickness of 35 nm in the range of the radius of gyration. Force-distance curves were performed in the glass transition range to create permanent nanometric indentations with maximal forces up to 4 μN. Quantitative measurements of the indentation depth during and after application of the force, hysteresis energy and slope of the loading part are carried out as function of sample temperature and applied force. The glass transition of the polymer film can be clearly identified by the change of the mechanical properties of the polymer. Surprisingly, only a small change of elasticity at the glass transition is observed.  相似文献   

14.
We study the formation of capillary bridges between micrometer-sized glass spheres immersed in a binary liquid mixture using bright field and confocal microscopy. The bridges form upon heating due to the preferential wetting of the hydrophilic glass surface by the water-rich phase. If the system is cooled below the demixing temperature, the bridges disappear within a few seconds by intermolecular diffusion. Thus, this system offers the opportunity to switch the bridges on and off and to tune precisely the bridge volume by altering the temperature in a convenient range. We measure the bridge geometry as a function of the temperature from bright field images and calculate the cohesive force. We discuss the influence of the solvent composition on the bridge formation temperature, the strength of the capillary force, and the bridge volume growth rate. Furthermore, we find that the onset of bridge formation coincides with the water-lutidine bulk coexistence curve.  相似文献   

15.
A method for radiative and non-radiative energy transfer between flourescent organic dyes incorporated in a thin film deposited on a glass and inorganic ions in the bulk or surface of the glass is proposed.  相似文献   

16.
To study the transport properties of individual helical polyacetylene (PA) fibers, we developed a method to extract a single fiber from tightly entangled ropes of helical PA bulk film. After a few minutes of sonication of a piece of helical PA bulk film in an organic solution containing surfactant, a droplet of solution is deposited on the pre-pattened electrode under argon atmosphere. AFM images show that extracted helical PA fibers are typically 10 mum in length and 100-200 nm in diameter. We found that the helicity of bulk materials is conserved. We present the temperature dependencies of current-voltage characteristics of individual helical PA fibers doped with iodine.  相似文献   

17.
We report an experimental study that points out the existence of a fluid to soft-glass transition in Langmuir polymer monolayers of poly(methyl methacrylate) (PMMA), for which the water/air interface behaves as a poor-solvent. The temperature dependence of surface pressure vs. surface area equilibrium isotherms shows a glass-like transition temperature at T(g,2D)≈ 298 K, significantly lower than the value for bulk PMMA (T(g,bulk)≈ 378 K). The plot of the film thickness h vs. temperature shows a sharp change of slope at about the same temperature, 298 K, which is a typical hallmark of a glass transition in thin polymer films [J. L. Keddie, R. A. L. Jones, R. A. Cory, Europhys. Lett., 1996, 27, 59-64]. Furthermore, slightly above T(g,2D), the temperature dependence of the dilational viscosity does not follow an Arrhenius law, but instead can be described by a Vogel-Fulcher-Tamman equation with parameters that are typical of a fragile glass. Not only the qualitative behavior of three distinct equilibrium and dynamic properties, but also the quantitative agreement of the values of T(g) obtained, are a strong evidence of the existence of a fluid to soft-glass transition in this quasi-2D system.  相似文献   

18.
The viscoelastic properties of thin polystyrene (PS) films depend on confinement, as it can modify the molecular dynamics affecting the glass transition. In the recent past, the authors have investigated the region next to the free interface by means of an atomic force microscope suitably modified to monitor the indentation of a tip into a film during a given lapse of time while applying a constant load. Herein, to explore the interface with the substrate, the authors report on experiments in which PS brushes grafted to native silicon oxide were used. It was found that the film wettability on brushes and H‐terminated silicon can be highly improved when compared with native silicon oxide. In addition, the glass transition temperature of thin films increases up to the bulk value in the case of film/brush combinations with high molecular weight or films with high molecular weight on H‐terminated silicon. Data are discussed according to hypotheses such as residual solvent presence, interface free volume, and molecular mechanical coupling. These observations can be of great interest for nanotechnological applications, especially in those instances where one needs to tailor the temperature dependence of viscoelastic properties of thin films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1149–1156  相似文献   

19.
Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca. 100 nm. It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk. In this paper, we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining, bulk-like layer in the film. Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide, where divergent thickness dependences are observed.  相似文献   

20.
We report on nanoscale wear induced by atomic force microscopy using a heated cantilever/tip on a 20 nm thick film of polystyrene. Wear modes dependent on tip temperature characteristics were identified. Below the glass transition temperature of the polymer, the formation of quasi one-dimensional surface ripples with a typical period on the order of 100 nm was observed. We found that the ripple height typically saturates at 20 nm and that the buildup rate depends on temperature and load. From these observations we can calculate an activation energy for the ripple formation, which is on the order of 0.4 eV, at temperatures close to but below the glass transition temperature of the polymer. In the glass transition regime the ripple formation is strongly enhanced. An abrupt change of the wear mode is observed as the polymer in contact with the tip is heated above the glass transition temperature. Here, polymer material is transported along with the propagating tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号