首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of the chromium(III)-l-arginine complex [CrIII(L)2(H2O)2]+ by periodate has been investigated. In aqueous solutions, [CrIII(L)2(H2O)2]+ is oxidized by IO−4 according to the rate law: d[CrVI]/dt=k2K5[CrIII]T [IVII]T/1 +([H+]/K1)+K5[IVII]T where k2 is the rate constant for the electron transfer process, K1 the equilibrium constant for the dissociation of [CrIII(L)2- (H2O)2]+ to [CrIII(L)2(H2O)(OH)]+H+, and K5 the pre-equilibrium formation constant. Values of k2= 4.02×10−3s−1, K1=5.60×10−4m and K5=171m−1 were obtained at 30°C and I=0.2m. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO−4 to chromium(III). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
A novel chromium(III) complex of tetraoxalylurea was prepared. In aqueous solutions, [CrIII(H2L)(H2O)]+ (H2L = diprotonated tetraoxalylurea) is oxidized by IO 4 according to the rate law
  相似文献   

3.
Oxidation of the trans-[Cr(cyca)(OH)2]+ complex, where cyca = meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by [Fe(CN)6 ]3- ion in strongly alkaline media, leading to [CrV O(cycaox )]3+ ion, has been studied using electronic and e.p.r. spectroscopy. The kinetics of the CrIII → CrIV transformation have been studied using a large excess of the reductant and OH- ion over the oxidant. The reaction is a second order process: first order in [CrIII] and [FeIII] at constant [OH-]. The second order rate constant is higher than linearly dependent on the OH- concentration. The mechanism of the reaction has been discussed. A relatively inert intermediate chromium(V) species was detected based on characteristic bands in the visible region and the e.p.r. signal at giso = 1.987 for the systems where an excess of oxidant was used. The hyperfine structure of the main e.p.r. signal is consistent with the d1 -electron interactions with four equivalent nitrogen nuclei and [CrV = O(cycaox)]3+ formula, where cycaox = oxidized cyca, can be postulated for the intermediate CrV complex.  相似文献   

4.
The kinetics of the oxidation of formate, oxalate, and malonate by |NiIII(L1)|2+ (where HL1 = 15-amino-3-methyl-4,7,10,13-tetraazapentadec-3-en-2-one oxime) were carried out over the regions pH 3.0–5.75, 2.80–5.50, and 2.50–7.58, respectively, at constant ionic strength and temperature 40°C. All the reactions are overall second-order with first-order on both the oxidant and reductant. A general rate law is given as - d/dt|NiIII(L1)2+| = kobs|NiIII(L1)2+| = (kd + nks |R|)|NiIII(L1)2+|, where kd is the auto-decomposition rate constant of the complex, ks is the electron transfer rate constant, n is the stoichiometric factor, and R is either formate, oxalate, or malonate. The reactivity of all the reacting species of the reductants in solution were evaluated choosing suitable pH regions. The reactivity orders are: kHCOOH > k; k > k > k, and k > k < k for the oxidation of formate, oxalate, and malonate, respectively, and these trends were explained considering the effect of hydrogen bonded adduct formation and thermodynamic potential. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 225–230, 1997.  相似文献   

5.
The oxidation kinetics of the 2-aminomethylpyridineCrIII complex with periodate in aqueous solution were studied and found to obey the rate law:Rate = [CrIII]T [IO4 -]{k1K2 + k2 K1 K3/[H+]}/{1+K1/[H+] + k2[IO4 -]+K1K3/[H+][IO4 -]} where K 1, K 2 and K 3 are the deprotonation of [Cr(L)2(H2O)]3+ and pre-equilibrium formation constants for [(L)2—Cr—OIO3]2+ and [(L)2—Cr—OH—OIO3]+ precursor complexes respectively. An inner-sphere mechanism was proposed. The effect of Cu2+ on the oxidation rate was studied over the (1.0–9.0) × 10−5 mol dm−3 range. The reaction rate was found to be inversely proportional to the Cu2+ concentration over the range studied. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The kinetics of oxidation of the diaqua(nitrilotriacetato)chromium(III) complex [CrIIInta(H2O)2], by N-bromosuccinimide (NBS) to chromium(VI) in aqueous solution obeys the equation: where k1 is the rate constant for the electron-transfer process, K1 the equilibrium constant for the dissociation of [CrIIInta(H2O)2] to [CrIIInta(H2O)(OH)]−, and K2 is the pre-equilibrium formation constant for the precursor complex [CrIIInta(OH)(NBS)]−. The thermodynamic activation parameters were calculated and it is proposed that electron transfer proceeds via an inner-sphere mechanism. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The kinetics of oxidation of 1,2-butanediol by dihydroxyditellutoargentate(III) (DDA) is studied spectrophotometrically. The reaction rate shows first order dependence in DDA and 1 < nap < 2 order in 1,2-butanediol. It is found that the pseudo-first order rate constant k obs increases with the increase in concentration of OH? and decreases with the increase in concentration of TeO4 2?. There is a negative salt effect; no free radical is detected. In view of this, the dihydroxymonotelluratoargentate(III) species is assumed to be the active species. A plausible mechanism involving a two-electron transfer is proposed and the rate equations derived from mechanism explains all experimental results. The activation parameters along with the rate constants of the rate-determining step are calculated.  相似文献   

8.
The oxidation ofd-xylose by Mn(III) pyrophosphate in sulphuric acid has been found to be first order with respect to [Mn(III)]. Variation of rate with [d-xylose] suggests the rapid formation of reversible cyclic complex between Mn(III) and id-xylose, which further disproportionates in a slow rate determining step. Oxidation rate has been found to increase with [H+]. Retardation of rate due to [pyrophosphate] and increase due to [Mn(II)] have been also observed. The value of thermodynamic parameters E, S, and G have been found to be 17.6±0.1 kcal/mole, –10.1±0.1 e.u. and 20.6±0.1 kcal/ mole respectively. A mechanism involving a free radical has been proposed for the reaction under study.  相似文献   

9.
The kinetics of oxidation of the chromium(III)–dipicolinic acid complex [CrIII(DPA)2(H2O)2] by N-bromosuccinimide (NBS) in aqueous solution to CrVI have been studied spectrophotometrically over the 20–40 °C range. The reaction is first order with respect to both [NBS] and [CrIII], and increases with pH over the 5.92–6.93 range. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of [NBS] to chromium(III).  相似文献   

10.
Oxidation of the macrocyclic Cr(III) complex cis-[Cr(cycb)(OH)2]+, where cycb=rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by an excess of the hexacyanoferrate(III) in basic solution, slowly produces Cr(V) species. These species, detected using e.p.r. spectroscopy, are stable under ambient conditions for many hours, and the hyperfine structure of the e.p.r. spectrum is consistent with the interaction of the d-electron with four equivalent nitrogen nuclei. Electro-spray ionization mass spectrometry suggests a concomitant oxidation of the macrocyclic ligand, in which double bonds and double bonded oxygen atoms have been introduced. By comparison basic chromate(III) solutions are oxidized rapidly to chromate(VI) by hexacyanoferrate(III) without any detectable generation of stable Cr(V) intermediates.Kinetics of oxidation of the macrocyclic Cr(III) complex in alkaline solution has been studied under excess of the reductant. Rate determining formation of Cr(IV) by a second order process involving the Cr(III) and the Fe(III) reactants is seen. This reaction also involves a characteristic higher order than linear dependence on the hydroxide concentration. Reaction mechanisms for the processes, including oxidation of the coordinated macrocyclic ligand – under excess of the oxidant- are proposed.  相似文献   

11.
12.
In aqueous acidic media containing an excess of Hbipy+–bipy buffer in the pH 3.5–4.5 range, the complex ion [(bipy)2MnIII(-O)2MnIV(bipy)2]3+ (1) coexists in rapid equilibrium with its diaqua derivative [MnIII,IV 2 (-O)2(bipy)3(H2O)2]3+ (1a) (bipy = 2,2-bipyridine). An excess of N2H5 + quantitatively reduces the mixture to MnII, itself being oxidised to N2. The first order rate constant, k o decreases with increasing C bipy (C bipy = [Hbipy+] + [bipy]) but increases with increasing [N2H5 +] and [H+]. The observed kinetic dependence can be explained in terms of a reaction between (1a) and N2H5 +. Replacement of solvent H2O with D2O decreases k o substantially and the effect suggests simultaneous transfer of an electron and a proton in the rate-determining step. The relevance of this observation to the delayed oxidation of H2O in the hydrazine-treated photosystem II is discussed.  相似文献   

13.
Mephenesin is being used as a central‐acting skeletal muscle relaxant. Oxidation of mephenesin by bis(hydrogenperiodato)argentate(III) complex anion, [Ag(HIO6)2]5?, has been studied in aqueous alkaline medium. The major oxidation product of mephenesin has been identified as 3‐(2‐methylphenoxy)‐2‐ketone‐1‐propanol by mass spectrometry. An overall second‐order kinetics has been observed with first order in [Ag(III)] and [mephenesin]. The effects of [OH?] and periodate concentration on the observed second‐order rate constants k′ have been analyzed, and accordingly an empirical expression has been deduced: k′ = (ka + kb[OH?])K1/{f([OH?])[IO?4]tot + K1}, where [IO?4]tot denotes the total concentration of periodate, ka = (1.35 ± 0.14) × 10?2M?1s?1 and kb = 1.06 ± 0.01 M?2s?1 at 25.0°C, and ionic strength 0.30 M. Activation parameters associated with ka and kb have been calculated. A mechanism has been proposed to involve two pre‐equilibria, leading to formation of a periodato‐Ag(III)‐mephenesin complex. In the subsequent rate‐determining steps, this complex undergoes inner‐sphere electron transfer from the coordinated drug to the metal center by two paths: one path is independent of OH? whereas the other is facilitated by a hydroxide ion. In the appendix, detailed discussion on the structure of the Ag(III) complex, reactive species, as well as pre‐equilibrium regarding the oxidant is provided. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 440–446, 2007  相似文献   

14.
The kinetics of oxidation of (ethylenediaminediacetato)-chromium(III), [Cr(EDDA)(OH2)2]+, by N-bromosuccinimide (NBS) in aqueous solution to yield CrVI have been studied spectrophotometrically over the 20–40°C range. The reaction rate is first order with respect to both [NBS] and [CrIII], and increases with pH over the range 4.8–5.8. The activation parameters were calculated. A mechanism in which deprotonated [CrIII(EDDA)(OH2)(OH)] is the reactive species is suggested. The electron transfer may proceed via an inner sphere mechanism through bridging of the two reactants by the hydroxo ligand.  相似文献   

15.
The kinetics of the reaction between glycolaldehyde (GA) and tetrachloroaurate(III) in acetic acid-sodium acetate buffer has been studied. The reaction is first-order with respect to [AuIII] as well as [GA]. Both H+ and Cl ions retard the rate of reaction. AuCl4, AuCl3(OH2), and AuCl3(OH) are the reactive species of gold(III) with gradually increasing reactivity. A reaction mechanism involving two-electron transfer rate determining steps has been proposed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 613–619, 1998  相似文献   

16.
The reaction between quinol and alkaline hexacyanoferrate(III) at constant ionic strength gives p-benzoquinone. The rate of the reaction was first order in the concentrations of substrate, oxidant and alkali. The slow step of the reaction involves the formation of the p-benzosemiquinone radical, which was detected by esr spectroscopy as a five-line spectrum with peak intensity ratios of 14641.
(III) -. , . - , , 14641.
  相似文献   

17.
The oxidation of H2NOH is first-order both in [NH3OH+] and [AuCl4 ]. The rate is increased by the increase in [Cl] and decreased with increase in [H+]. The stoichiometry ratio, [NH3OH+]/[AuCl4 ], is 1. The mechanism consists of the following reactions.
The rate law deduced from the reactions (i)–(iv) is given by Equation (v) considering that [H+] K a.
The reaction (iii) is a combination of the following reactions:
The activation parameters for the reactions (ii) and (iii) are consistent with an outer-sphere electron transfer mechanism.  相似文献   

18.
Pan Z  Newcomb M 《Inorganic chemistry》2007,46(16):6767-6774
The kinetics of the reactions of three porphyrin-iron(IV)-oxo derivatives with alkenes and benzylic alcohols were measured. The iron-oxo systems studied were 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin-iron(IV)-oxo (2a), 5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrin-iron(IV)-oxo (2b), and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin-iron(IV)-oxo (2c). Species 2 were stable for hours at room temperature as dilute solutions in acetonitrile and reacted hundreds to thousands of times faster in the presence of high concentrations of substrates. Typical second-order rate constants determined from pseudo-first-order kinetic studies are 1-2 x 10(-2) M(-1) s(-1) for reactions with styrene and 3 x 10(-2) M(-1) s(-1) for reactions with benzyl alcohol. The reactivity order for the iron-oxo species was 2a > 2b > 2c, which is inverted from that expected on the basis of the electron demand of the porphyrin macrocycles, and the oxidation reaction was suppressed when excess porphyrin-iron(III) complex was added to reaction mixtures. These observations indicate that the reactions involve disproportionation of the iron(IV)-oxo species 2 to give an iron(III) species and a more highly oxidized iron species, presumed to be an iron(IV)-oxo porphyrin radical cation, that is the true oxidant in the reactions. Analyses of the kinetics of oxidations of a series of para-substituted benzylic alcohols with Hammett sigma+ -substituent constants and with a dual-parameter method developed by Jiang (Jiang, X. K. Acc. Chem. Res. 1997, 30, 283) indicated that considerable positive charge developed on the benzylic carbons in the oxidation reactions, as expected for electrophilic oxidants, and also that substantial radical character developed on the benzyl carbon in the transition states.  相似文献   

19.
Lam WW  Lee MF  Lau TC 《Inorganic chemistry》2006,45(1):315-321
The kinetics of the oxidation of hydroquinone (H(2)Q) and its derivatives (H(2)Q-X) by trans-[Ru(VI)(tmc)(O)(2)](2+) (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) have been studied in aqueous acidic solutions and in acetonitrile. In H(2)O, the oxidation of H(2)Q has the following stoichiometry: trans-[Ru(VI)(tmc)(O)(2)](2+) + H(2)Q --> trans-[Ru(IV)(tmc)(O)(OH(2))](2+) + Q. The reaction is first order in both Ru(VI) and H(2)Q, and parallel pathways involving the oxidation of H(2)Q and HQ(-) are involved. The kinetic isotope effects are k(H(2)O)/k(D(2)O) = 4.9 and 1.2 at pH = 1.79 and 4.60, respectively. In CH(3)CN, the reaction occurs in two steps, the reduction of trans-[Ru(VI)(tmc)(O)(2)](2+) by 1 equiv of H(2)Q to trans-[Ru(IV)(tmc)(O)(CH(3)CN)](2+), followed by further reduction by another 1 equiv of H(2)Q to trans-[Ru(II)(tmc)(CH(3)CN)(2)](2+). Linear correlations between log(rate constant) at 298.0 K and the O-H bond dissociation energy of H(2)Q-X were obtained for reactions in both H(2)O and CH(3)CN, consistent with a H-atom transfer (HAT) mechanism. Plots of log(rate constant) against log(equilibrium constant) were also linear for these HAT reactions.  相似文献   

20.
The kinetics of oxidation of oxalate and malonate by diperiodatocuprate(III) have been investigated. The orders with respect to [substrate] and [oxidant] are both unity. The rate of oxidation increased with increase in [OH] and decrease in [KIO4]. The reactivity of malonate is higher than oxalate. A free radical mechanism is proposed based on the stoichiometry and products of oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号