首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel surface fabrication methodology has been accomplished, aimed at efficient anodic photocurrent generation by a photoexcited porphyrin on an ITO (indium-tin oxide) electrode. The ITO electrode was submitted to a surface sol-gel process with titanium n-butoxide in order to deposit a titanium monolayer. Subsequently, porphyrins were assembled as monolayers on the titanium-treated ITO surface via phosphonate, isophthalate, and thiolate groups. Slipped-cofacial porphyrin dimers, the so-called artificial special pair at the photoreaction center, were organized through imidazolyl-to-zinc complementary coordination of imidazolylporphyrinatozinc(II) units, which were covalently immobilized by ring-closing olefin metathesis of allyl side chains. The modified surfaces were analyzed by means of X-ray photoelectron spectroscopy. Photoirradiation of the porphyrin dimer generated a large anodic photocurrent in aqueous electrolyte solution containing hydroquinone as an electron sacrificer, due to the small reorganization energy of the dimer. The use of different linker groups led to significant differences in the efficiencies of anodic photocurrent generation. The apparent flat-band potentials evaluated from the photocurrent properties at various pH values and under biased conditions imply that the band structure of the ITO electrode is modified by the anchoring species. The quantum yield for the anodic photocurrent generation by photoexcitation at the Soret band is increased to 15 %, a surprisingly high value without a redox cascade structure on the ITO electrode surface, while excitation at the Q band is not so significant. Extensive exploration of the photocurrent properties has revealed that hot injection of the photoexcited electron from the S2 level into the conduction band of the ITO electrode takes place before internal conversion to the S1* state, through the strong electronic communication of the phosphonyl anchor with the sol-gel-modified ITO surface.  相似文献   

2.
To investigate new architectures for the self-assembly of multiporphyrin arrays, a one-flask synthesis of a shape-persistent cyclic hexameric array of porphyrins was exploited to prepare six derivatives bearing diverse pendant groups. The new arrays contain 6-12 carboxylic acid groups, 12 amidino groups, 6 thiol groups, or 6 thiol groups and 6 carboxylic acid groups in protected form (S-acetylthio, TMS-ethyl, TMS-ethoxycarbonyl). The arrays contain alternating Zn and free base (Fb) porphyrins or all Zn porphyrins. The one-flask synthesis entails a template-directed, Pd-mediated coupling of a p/p'-substituted diethynyl Zn porphyrin and a m/m'-substituted diiodo Fb porphyrin. The porphyrin building blocks (trans-A(2)B(2), trans-AB(2)C) contain the protected pendant groups at nonlinking meso positions. A self-assembled monolayer (SAM) of a Zn(3)Fb(3) cyclic hexamer containing one thiol group on each porphyrin was prepared on a gold electrode and the surface-immobilized architecture was examined electrochemically. Together, the work reported herein provides cyclic hexameric porphyrin arrays for studies of self-assembly in solution or on surfaces.  相似文献   

3.
TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled bychronoamperometry deposition time. Results of SEM and XRD analysis show that Zn nanoparticles had a diameter of about 15-25 nm when the deposition time was 3-5 s. The UV-Vis diffuse reflectance spectra show the Zn loaded harvest light with 480-780 nm more effectively than the unloaded sample. The photocurrent response of Zn loaded TNTs electrodes were studied, the results showed that TNTs electrodes loaded with Zn nanoparti-cles has 50% increased photocurrent response under high-pressure mercury lamp irradiation compared with unloaded TNTs electrode.  相似文献   

4.
High-valency manganese (IV,V)-oxo porphyrins have been electrochemically generated and in situ spectrally characterized in multiporphyrin arrays, which were formed by an interfacial coordination reaction of Na2PdCl4 with manganese (III) tetrapyridylporphyrin (MnTPyP). Multilayers of the Pd-MnTPyP multiporphyrin arrays were obtained by the Langmuir-Blodgett (LB) method. The redox behaviors of manganese in the multiporphyrin arrays were pH-dependent. Spectroelectrochemical experiments revealed a reversible redox process between Pd-Mn(III)TPyP and its Mn(IV)-oxo species, but an irreversible process between Pd-Mn(III)TPyP and its Mn(V)-oxo species. The Pd-Mn(IV)TPyP multiporphyrin arrays could be spontaneously reduced to their Mn(III) complex, while the Pd-Mn(V)TPyP arrays were rather stable in basic solutions (pH > 10.5). However, when the Pd-Mn(V)TPyP multiporphyrin arrays were washed by or immersed in water, they were immediately reduced to their Mn(III) complex. Because these well-organized multiporphyrin arrays are of high thermal and chemical stability, they are potential molecular materials in the studies of natural and artificial catalytic processes as well as redox-based molecular switches.  相似文献   

5.
Two types of multiporphyrin arrays, mediated by PdCl4(2-) complex ions at the air-water interface, were alternately transferred onto solid supports to form three-dimensional organized multilayers by a layer-by-layer method.  相似文献   

6.
π-Stacked naphthalenediimide (NDI) arrays are of interest as charge-transport materials. We have designed and synthesized an NDI derivative with two Zn(II)-cyclens that act as receptors for the thymine base in DNA. UV/Vis and CD spectroscopy, gel filtration, and molecular-modeling studies have shown that the bis(Zn(II)-cyclen)-NDI can be assembled in the presence of oligo-dT to form π-stacked NDI arrays. The assembly of the NDI arrays was found to be dependent on the length of the oligo-dT and the temperature. The NDI-oligo-dT assembly on a gold substrate exhibits photocurrent responses due to electron transfer through the π-stacked array.  相似文献   

7.
Multichromophore arrays of bis(2‐thienyl)diketopyrrolopyrrole (DPP) and naphthalenediimide (NDI) with two ZnII‐cyclens were constructed using thymidine DNA as a scaffold through the binding of the ZnII‐cyclens with thymine bases. We demonstrate photocurrent generation in a donor–acceptor heterojunction configuration consisting of the DPP (donor) and NDI (acceptor) arrays co‐immobilized on an Au electrode. The co‐immobilized electrode exhibited good photocurrent responses because of the efficient charge separation between the DPP and NDI arrays. In contrast, an immobilized electrode consisting of randomly assembled DPP‐NDI arrays generated no photocurrent response because DPP formed ground‐state charge‐transfer complexes with NDI in the randomly assembled arrays. Therefore, our approach to generate donor–acceptor heterojunctions based on DNA–multichromophore arrays is a useful method to efficiently generate photocurrent.  相似文献   

8.
Giant multiporphyrin arrays as artificial light-harvesting antennas   总被引:1,自引:0,他引:1  
Synthetic giant multiporphyrin arrays with well-defined architectures are reviewed in terms of artificial light-harvesting materials. Meso,meso-linked porphyrin arrays and multiporphyrin dendrimers have successfully mimicked the light-harvesting function of bacterial photosynthetic systems. We have also developed novel multiporphyrin-modified metal nanoclusters where porphyrins employed as a light-harvesting unit are well organized onto metal nanoclusters by self-assembly processes. Multiporphyrin-modified metal nanoclusters have been applied to photocatalyses and photovoltaic cells. In particular, they have been assembled with fullerenes step-by-step to make large, uniform clusters on nanostructured semiconductor electrodes, which exhibit a high power-conversion efficiency close to 1%. These systems provide valuable information on the design of porphyrin molecular assemblies that can be tailored to construct molecular photonic devices as well as artificial photosynthetic systems.  相似文献   

9.
The ability to incorporate distinct metalloporphyrins at designated sites in multiporphyrin arrays is essential for diverse applications in materials and biomimetic chemistry. The synthesis of such mixed-metal arrays via acid catalyzed reactions has largely been restricted to metalloporphyrins of stability class II (e.g., Cu, Co, Ni) or I. We describe routes for the rational synthesis of mixed-metal arrays via acid-catalyzed condensations that are compatible with metalloporphyrins of stability class III (e.g., Zn) and IV (e.g., Mg). The routes are demonstrated for p-phenylene-linked arrays. The key finding is that several mild Lewis acids [InCl(3), Sc(OTf)(3), Yb(OTf)(3), and Dy(OTf)(3)], which are known to catalyze the dipyrromethane + dipyrromethane-dicarbinol condensation in CH(2)Cl(2) at room temperature without acidolysis, do not demetalate zinc or magnesium porphyrins under the same conditions. Rational routes to porphyrin dyads and triads employ reaction of a (porphyrin)-dipyrromethane and a (porphyrin)-dipyrromethane-dicarbinol. The porphyrin-forming reactions (six examples) proceed in yields of 18-28%. The metalation states of the arrays prepared in this manner include Zn-free base (ZnFb), MgFb, ZnFbMg, ZnFbZn, and ZnFbFb. Studies of the catalysis process indicate that the dipyrromethane + dipyrromethane-dicarbinol condensation is catalyzed by both the Lewis acid and a Br?nsted acid derived in situ from the Lewis acid. Taken together, the ability to employ otherwise "acid-labile" metalloporphyrins as precursors in condensation procedures should broaden the scope of accessible mixed-metal multiporphyrin arrays and motivate further studies of the application of mild Lewis acid catalysts in porphyrin chemistry.  相似文献   

10.
Novel organic solar cells have been prepared using quaternary self-organization of porphyrin (donor) and fullerene (acceptor) units by clusterization with gold nanoparticles on nanostructured SnO2 electrodes. First, porphyrin-alkanethiolate monolayer-protected gold nanoparticles (H2PCnMPC: n is the number of methylene groups in the spacer) are prepared (secondary organization) starting from the primary component (porphyrin-alkanethiol). These porphyrin-modified gold nanoparticles form complexes with fullerene molecules (tertiary organization), and they are clusterized in acetonitrile/toluene mixed solvent (quaternary organization). The highly colored composite clusters can then be assembled as three-dimensional arrays onto nanostructured SnO2 films to afford the OTE/SnO2/(H2PCnMPC+C60)m electrode using an electrophoretic deposition method. The film of the composite clusters with gold nanoparticle exhibits an incident photon-to-photocurrent efficiency (IPCE) as high as 54% and broad photocurrent action spectra (up to 1000 nm). The power conversion efficiency of the OTE/SnO2/(H2PC15MPC+C60)m composite electrode reaches as high as 1.5%, which is 45 times higher than that of the reference system consisting of the both single components of porphyrin and fullerene.  相似文献   

11.
The determination of heavy metals in concentrations less than 10-6 mol/L by ion chromatography with conductivity detection requires a preconcentration step. Therefore, a special electrochemical equipment and method was developed for the on-line preconcentration of the divalent metals Ni, Co, Zn and Cd and their subsequent ion chromatographic determination. The loop of the injection valve of an ion chromatograph was replaced by an electrochemical flow-through-cell with a gold working electrode, a platinum auxiliary electrode and a silver/silver sulphate reference electrode. The preconcentration step consists of the deposition of the reduced metals on the electrode surface during a continuous pumping of the sample solution through the cell. After switching of the mobile phase through the cell, the analytes are injected after their reoxidation directly into the mobile phase. A new preconcentration step is simultaneously possible during the actual chromatographic run. An effective separation of the analytes from the matrix is also possible with the proposed system. A maximum of metal ion accumulation was obtained after 120 min in the galvanostatic mode on a gold tube electrode. The detection limits for Co(II), Ni(II), Zn(II) and Cd(II) were improved by a factor of 7.7, 10.4, 11.2, 14.0, respectively, and were in the 0.1 mol/L concentration range with a RSD of 2–6%. The accumulation of metal ions was disturbed in the presence of Cr(III).  相似文献   

12.
Chow E  Hibbert DB  Gooding JJ 《The Analyst》2005,130(6):831-837
An electrochemical sensor for the detection of cadmium ions is described using immobilized glutathione as a selective ligand. First, a self-assembled monolayer of 3-mercaptopropionic acid (MPA) was formed on a gold electrode. The carboxyl terminus then allowed attachment of glutathione (GSH)via carbodiimide coupling to give the MPA-GSH modified electrode. A cadmium ion forms a complex with glutathione via the free sulfhydryl group and also to the carboxyl groups. The complexed ion is reduced by linear and Osteryoung square wave voltammetry with a detection limit of 5 nM. The effect of the kinetics of accumulation of cadmium on the measured current was investigated and modeled. Increasing the temperature of accumulation and electrochemical analysis caused an increase in the voltammetric peak of approximately 4% per degrees C around room temperature. The modified electrode could be regenerated, being stable for more than 16 repeated uses and more than two weeks if used once a day. Some interference from Pb(2+) and Cu(2+) was observed but the effects of Zn(2+), Ni(2+), Cr(3+) and Ba(2+) were insignificant.  相似文献   

13.
Ferrocene-bridged trisporphyrin (2) was synthesized by two-steps condensation of corresponding aldehydes and dipyrromethanes, and its self-assembling behavior based on the complementary coordination motif of imidazolylporphyrinatozinc(II) was investigated in conjunction with hinge-like flexibility given by freely rotating cyclopentadienyl rings of ferrocene connector. Ferrocene-bridged trisporphyrin (2) spontaneously and exclusively generated the dimeric ring (7) upon simple zinc(II) insertion, indicating that the freely rotating hinge connector favored the smallest ring formation. Taking advantage of the unique hinge-like flexibility of ferrocene, we attempted to transform the dimer ring into a mixture of porphyrin macrocycles by reorganizing the structure cleaved once by pyridine. A series of porphyrin macrocycles from trimer to decamer can be separated into its components by preparative gel permeation chromatograms. Macrocycles obtained are kept stable in the absence of coordinating solvents. On the other hand, they were easily transformed to the dimer ring in the presence of coordinating solvents such as methanol, showing that the transformation is completely reversible and can be controlled by the choice of the solvent system. A series of porphyrin macrocycles was confirmed via covalent linking of each complementary coordination dimer pair by metathesis reaction in the presence of Grubbs's catalyst. The coordination behavior of the bidentate ligands with different spacer lengths toward the dimer ring revealed that only the bidentate ligand (15) with a spacer length that matched the facing central porphyrins was selectively accommodated inside the ring. Coordination assembled flexible rings with tunable cavities and multiple coordination sites will be used as versatile hosts for a wide variety of guest molecules.  相似文献   

14.
As a model of bacterial photosynthetic light-harvesting antenna, a large number of porphyrin units were organized into barrel-shaped macrorings. Two imidazolylporphyrinatozinc(II) molecules were linked through either unsubstituted thiophenes or 3,4-dioctylthiophenes 1 a and 1 b, respectively. These structures were spontaneously organized by complementary coordination of the imidazolyl to zinc and produced a series of self-assembled fluorescent polygonal macrorings under high dilution conditions. The ring size increased compared with previous m-phenylene examples. The size distribution was also controlled by the presence of octyl substituents. A wide distribution of macrorings from 7- to >15-mer was obtained from 1 a, whereas macrorings ranging from 7- to 11-mer with a maximum population focused at the 8-mer were formed with 1 b. The size distribution was governed by competition between entropy-favored, smaller-ring formation and the enthalpy-favored, less-strained larger macroring. The UV/Vis spectra showed a gradual redshift for the larger rings reflecting an increase in the transition dipole interactions.  相似文献   

15.
The availability of multiporphyrin arrays with defined architectures and good solubility in organic solvents is essential for a wide variety of physical studies. Herein the synthesis of linear multiporphyrin arrays (triads, tetrad, pentad) bearing solubilizing 7-tridecyl (swallowtail) groups is presented. The rodlike arrays are composed of zinc porphyrins at the termini and 1, 2, or 3 free base porphyrins at the core. The free base porphyrins in the tetrad and pentad are joined to each other via p-phenylene linkers whereas the zinc porphyrins in each array are attached to the core free base porphyrins via 1,4-diphenylethyne linkers. The arrays are designed for studies of interporphyrin electronic communication.  相似文献   

16.
On the basis of the coordination geometry of metal ions, regular cubic, clubbed, and wirelike nanocrystals of Cd(2+)-/PtCl(6)(2-)-mediated, and Hg(2+)-/Ag(+)-/PtCl(4)(2-)-mediated multiporphyrin arrays have been grown at the water-chloroform interface. The nanocrystal growth process was monitored by the transmission electron microscopy (TEM), which revealed (1) an intrinsic rule for coordination polymers, that is, the geometries of metal ions (as connects for the coordination polymers) dominate the frameworks of the related polymeric nanocrystals, and (2) one kind of intuitive nanocrystal growth processes at the interfaces. Both electron diffraction and X-ray diffraction patterns indicated the formation of well-defined nanocrystals. It was found that single-/microcrystals were formed at first, and then they grew into polycrystals. The nanocrystal layer was transferred onto Si and quartz substrate surfaces by the Langmuir-Blodgett method, with its composition analyzed by X-ray photoelectron spectroscopy as well as the arrangement of porphyrin macrocycles in the nanocrystals by UV-vis absorption spectroscopy.  相似文献   

17.
Di- and triporphyrin arrays consisting of 5,15-diphenylporphyrinatomagnesium(II) (MgDPP) coordinated to free-base and Ni(II) porphyrinyl mono- and bis-phosphine oxides, as well as the self-coordinating diphenyl[10,20-diphenylporphyrinatomagnesium(II)-5-yl]phosphine oxide [MgDPP(Ph(2)PO)], were synthesised in excellent yields and characterised by various spectroscopic techniques. Phosphine oxides stabilise Mg(II) coordination to porphyrins and the resulting complexes have convenient solubilities, while the Ni(II) complexes exhibit interesting intramolecular fluorescence quenching behaviour. The binding constant of MgDPP to triphenylphosphine oxide (5.3 +/- 0.1 x 10(5) M(-1)) and the very high self-association constant of [MgDPP(Ph(2)PO)] (5.5 +/- 0.5 x 10(8) M(-1)) demonstrate the strong affinity of phosphine oxides towards Mg(II) porphyrins. These complexes are the first strongly bound synthetic Mg(II) multiporphyrin complexes and could potentially mimic the "special pair" in the photosynthetic reaction centre.  相似文献   

18.
Ikeda C  Satake A  Kobuke Y 《Organic letters》2003,5(26):4935-4938
Porphyrin macrocycles composed of five and six units of m-gable imidazolylporphyrinatozinc (1-Zn) were synthesized by self-assembled cyclization followed by ring-closing metathesis linkings. Each porphyrin macrocycle was isolated by GPC chromatography, and their molecular weights were determined by MALDI-TOF mass spectroscopy. These structures represent mimics of light-harvesting complexes in photosynthetic bacteria. [structure: see text]  相似文献   

19.
The determination of heavy metals in concentrations less than 10(-6) mol/L by ion chromatography with conductivity detection requires a preconcentration step. Therefore, a special electrochemical equipment and method was developed for the on-line preconcentration of the divalent metals Ni, Co, Zn and Cd and their subsequent ion chromatographic determination. The loop of the injection valve of an ion chromatograph was replaced by an electrochemical flow-through-cell with a gold working electrode, a platinum auxiliary electrode and a silver/silver sulphate reference electrode. The preconcentration step consists of the deposition of the reduced metals on the electrode surface during a continuous pumping of the sample solution through the cell. After switching of the mobile phase through the cell, the analytes are injected after their reoxidation directly into the mobile phase. A new preconcentration step is simultaneously possible during the actual chromatographic run. An effective separation of the analytes from the matrix is also possible with the proposed system. A maximum of metal ion accumulation was obtained after 120 min in the galvanostatic mode on a gold tube electrode. The detection limits for Co(II), Ni(II), Zn(II) and Cd(II) were improved by a factor of 7.7, 10.4, 11.2, 14.0, respectively, and were in the 0.1 micromol/L concentration range with a RSD of 2-6%. The accumulation of metal ions was disturbed in the presence of Cr(III).  相似文献   

20.
An ultrasensitive "turn-on" electrochemical sensor for the Hg(2+) ion was proposed based on the T-Hg(2+)-T coordination chemistry and the controlled assembly of SWCNTs on the MHA/SAM-modified gold electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号