首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a methodology for developing reduced-order dynamic models of structural systems that are composed of an assembly of nonlinear component structures. The approach is a nonlinear extension of the fixed-interface component mode synthesis (CMS) technique developed for linear structures by Hurty and modified by Craig and Bampton. Specifically, the case of nonlinear substructures is handled by using fixed-interface nonlinear normal modes (NNMs). These normal modes are constructed for the various substructures using an invariant manifold approach, and are then coupled through the traditional linear constraint modes (i.e., the static deformation shapes produced by unit interface displacements). A class of systems is used to demonstrate the concept and show the effectiveness of the proposed procedure. Simulation results show that the reduced-order model (ROM) obtained from the proposed procedure outperforms the ROM obtained from the classical fixed-interface linear CMS approach as applied to a nonlinear structure. The proposed method is readily applicable to large-scale nonlinear structural systems that are based on finite-element models.  相似文献   

2.
张家铭  杨执钧  黄锐 《力学学报》2020,52(1):150-161
高维、非线性气动弹性系统的模型降阶是当前气动弹性力学与控制领域的研究热点之一.然而国内外现有的非线性模型降阶方法仍存在辨识算法复杂、精度有待提高等问题.本研究提出了一种基于非线性状态空间辨识的跨音速气动弹性模型降阶方法. 首先,该方法基于非定常空气动力的单位脉冲响应数据,采用特征系统实现算法对非线性状态空间模型的线性动力学部分进行系统辨识. 其次,引入状态和控制输入的非线性函数, 采用优化算法对非线性函数的系数矩阵进行优化,进而得到考虑非线性效应的空气动力降阶模型.为了验证该降阶模型在预测跨音速气动弹性力学行为的精确性,本文以三维机翼为研究对象,分别从基于非线性降阶模型的气动力辨识、跨声速颤振边界计算和极限环振荡预测三方面进行了算例验证,并与现有的模型降阶方法进行了对比, 进一步说明本文所提出方法的有效性.研究结果表明, 该降阶模型对上述三类问题的计算精度与直接流-固耦合方法相吻合,可用于高效预测飞行器跨声速气动弹性力学行为.   相似文献   

3.
A technique for order reduction of dynamic systems in structural form with static piecewise linear nonlinearities is presented. By utilizing two methods which approximate the nonlinear normal mode (NNM) frequencies and mode shapes, reduced-order models are constructed which more accurately represent the dynamics of the full model than do reduced models obtained via standard linear transformations. One method builds a reduced-order model which is dependent on the amplitude (initial conditions) while the other method results in an amplitude-independent reduced model. The two techniques are first applied to reduce two-degree-of-freedom undamped systems with clearance, deadzone, bang-bang, and saturation stiffness nonlinearities to single-mode reduced models which are compared by direct numerical simulation with the full models. It is then shown via a damped four-degree-of-freedom system with two deadzone nonlinearities that one of the proposed techniques allows for reduction to multi-mode reduced models and can accommodate multiple nonsmooth static nonlinearities with several surfaces of discontinuity. The advantages of the proposed methods include obtaining a reduced-order model which is signal-independent (doesn’t require direct integration of the full model), uses a subset of the original physical coordinates, retains the form of the nonsmooth nonlinearities, and closely tracks the actual NNMs of the full model.  相似文献   

4.
Natural frequencies of nonlinear coupled planar vibration are investigated for axially moving beams in the supercritical transport speed ranges. The straight equilibrium configuration bifurcates in multiple equilibrium positions in the supercritical regime. The finite difference scheme is developed to calculate the non-trivial static equilibrium. The equations are cast in the standard form of continuous gyroscopic systems via introducing a coordinate transform for non-trivial equilibrium configuration. Under fixed boundary conditions, time series are calculated via the finite difference method. Based on the time series, the natural frequencies of nonlinear planar vibration, which are determined via discrete Fourier transform (DFT), are compared with the results of the Galerkin method for the corresponding governing equations without nonlinear parts. The effects of material parameters and vibration amplitude on the natural frequencies are investigated through parametric studies. The model of coupled planar vibration can reduce to two nonlinear models of transverse vibration. For the transverse integro-partial-differential equation, the equilibrium solutions are performed analytically under the fixed boundary conditions. Numerical examples indicate that the integro-partial-differential equation yields natural frequencies closer to those of the coupled planar equation.  相似文献   

5.
This paper presents an investigation of the dynamics of electrically actuated single-walled carbon nanotube (CNT) resonators including the effect of their initial curvature due to fabrication (slack). A nonlinear shallow arch model is utilized. A perturbation method, the method of multiple scales, is used to obtain analytically the forced vibration response due to DC and small AC loads for various slacked CNTs of higher and lower aspect ratio. Results of the perturbation method are verified with those obtained by numerically integrating the equations of a multi-mode reduced-order model based on the Galerkin procedure. The effective nonlinearity of the CNT is calculated as a function of the slack level and the DC load. To handle computational problems associated with CNTs of small radiuses, results based on a nonlinear cable model are also demonstrated. The results have indicated that the quadratic nonlinearity due to slack has dominant effect on the dynamic behavior of the CNT.  相似文献   

6.
A model reduction approach based on Galerkin projection, proper orthogonal decomposition (POD), and the discrete empirical interpolation method (DEIM) is developed for chemically reacting flow applications. Such applications are challenging for model reduction due to the strong coupling between fluid dynamics and chemical kinetics, a wide range of temporal and spatial scales, highly nonlinear chemical kinetics, and long simulation run-times. In our approach, the POD technique combined with Galerkin projection reduces the dimension of the state (unknown chemical concentrations over the spatial domain), while the DEIM approximates the nonlinear chemical source term. The combined method provides an efficient offline–online solution strategy that enables rapid solution of the reduced-order models. Application of the approach to an ignition model of a premixed H2/O2/Ar mixture with 19 reversible chemical reactions and 9 species leads to reduced-order models with state dimension several orders of magnitude smaller than the original system. For example, a reduced-order model with state dimension of 60 accurately approximates a full model with a dimension of 91,809. This accelerates the simulation of the chemical kinetics by more than two orders of magnitude. When combined with the full-order flow solver, this results in a reduction of the overall computational time by a factor of approximately 10. The reduced-order models are used to analyse the sensitivity of outputs of interest with respect to uncertain input parameters describing the reaction kinetics.  相似文献   

7.
Moving from a general plate theory, a modified general shear deformable laminated plate theory (MGFSDT) exhibiting nonlinear curvatures but still allowing for some worth features of linear curvature models (von Karman) is formulated. Starting from MGFSDT partial differential equations, a minimal discretized model (Duffing equation) for symmetric cross-ply laminates nonlinear vibrations, whose coefficients account for shear deformability and nonlinear curvatures, is obtained via the Galerkin procedure. The variable features of such a Duffing model as obtainable via alternative kinematic assumptions at the continuum level are highlighted. Through the comparison of a number of underlying models in different technical situations, information on the influence of shear deformability on system nonlinear response and on the influence of nonlinear curvatures are obtained. Frequency–response curves through a multiple scale analysis are presented for different continuous models, kinds of material, mode numbers and boundary conditions.  相似文献   

8.
In this study, an improved nonlinear reduced-order model composed of a linear part and a nonlinear part is explored for transonic aeroelastic systems. The linear part is identified via the eigensystem realization algorithm and the nonlinear part is obtained via the Levenberg–Marquardt algorithm. The impulsive signal is chosen as the training signal for the linear part and the sinusoidal signal is used to determine the order of the linear part. The training signal for the nonlinear part is selected as the filtered white Gaussian noise with the maximal amplitude and frequency range to be designed via the aeroelastic responses. An NACA64A010 airfoil and an NACA0012 airfoil are taken as illustrative examples to demonstrate the performance of the presented reduced-order model in modeling transonic aerodynamic forces. The aeroelastic behaviors of the two airfoils are obtained via computational fluid dynamics to solve the Euler equation and the Navier–Stokes equation, respectively. The numerical results demonstrate that the presented reduced-order model can successfully predict the nonlinear aerodynamic forces with and without viscous flows. Moreover, the presented reduced-order model is capable of capturing the flutter velocity and modeling complex aeroelastic behaviors, including limit-cycle oscillations, beat phenomena and nodal-shaped oscillations at the transonic Mach numbers with high accuracy.  相似文献   

9.
郭子漪  赵建福  李凯  胡文瑞 《力学学报》2022,54(5):1186-1198
作为流动与传热相互耦合的非线性过程, 热毛细对流有着复杂的转捩过程, 探究流场和温度场随参数变化而发生的分岔现象, 是热毛细对流研究的一个重要课题. 基于本征正交分解的POD-Galerkin降维方法可以通过提取特征模态, 构建低维模型, 实现流场的快速计算. 数值分岔方法可以通过求解含参数动力系统的分岔方程, 直接计算稳定解和分岔点. 探究了将直接数值模拟方法、POD-Galerkin降维方法、数值分岔方法的优势结合, 以提高热毛细对流转捩过程分析效率的可行性. 利用直接数值模拟得到的流场和温度场数据, 构建了不同体积比下, 二维有限长液层热毛细对流的POD-Galerkin低维模型, 在低维模型上采用数值积分及数值分岔方法计算了分岔点, 得到了低维方程的分岔图. 在一定参数范围内, 在低维模型上模拟热毛细对流, 对雷诺数和体积比进行参数外推, 通过与直接数值模拟的结果对比, 验证了低维模型的准确性与鲁棒性. 说明了低维方程可以定性反映原高维系统的流动特性, 而定量方面, 由低维模型和直接数值模拟计算得到的周期解频率的相对误差大约为5%. 验证了利用POD-Galerkin降维方法研究热毛细对流的可行性.   相似文献   

10.
A unified formulation of the thermomechanical problem of laminated plates with von Karman nonlinearities, undergoing finite amplitude vibrations, is presented. It integrates mechanical and thermal aspects, by addressing them in parallel via the introduction of generalized 2D variables and equations also for the latter. The formulation virtually embeds a multitude of possible models, resulting from different assumptions about the plate mechanical and thermal configurations. The obtained continuous model is then subjected to a minimum reduction via Galerkin procedure. Some analyses of free and forced nonlinear vibrations under variable mechanical and/or thermal excitations are also carried out, to get some hints on the importance of different thermal aspects associated with membrane and bending dynamics, and on the possibility to catch them via variably simplified models.  相似文献   

11.
This work discusses an improved method of reduced-order modeling for existing data-driven nonlinear identification techniques through the incorporation of naïve elastic net regularization. The data-driven methods considered for this study operate using basis functions to represent the observed nonlinearity. Elastic net regularization is used to minimize the number of non-zero coefficients, thus modifying the basis functions and providing a compact representation. The ability of the naïve elastic net to provide reduced-order nonlinear models that can both accurately fit various data sets and computationally simulate new responses is illustrated through studies considering both synthetic data and experimental data. In both cases, the results obtained with the naïve elastic net are shown to match or outperform those from other traditional methods.  相似文献   

12.
基于特征正交分解的非定常气动力建模技术   总被引:2,自引:0,他引:2  
姚伟刚  徐敏  叶茂 《力学学报》2010,42(4):637-644
采用特征正交分解(proper orthogonal decomposition, POD)方法, 建立了基于状态空间的非定常气动力降阶模型, 并耦合结构方程, 建立了降阶的气动弹性系统, 开展了颤振分析的初步研究, 计算效率提高了2~3个数量级. 具体过程是:首先获取全阶系统的频域快照构成关联矩阵, 通过对关联矩阵进行奇异值分解提取流场模态(或流场基), 对低能量模态截断形成降阶子空间, 并将其映射到全阶系统, 从而形成基于状态空间的降阶非定常气动力模型. 对气动弹性标模AGARD445.6进行算例验证, 证明了降阶方法正确, 可以提供高效、高精度的气动弹性分析.   相似文献   

13.
An experimental validation of the suitability of reduction methods for studying nonlinear vibrations of distributed-parameter systems is attempted. Nonlinear planar vibrations of a clamped-clamped buckled beam about its first post-buckling configuration are analyzed. The case of primary resonance of the nth mode of the beam, when no internal resonances involving this mode are active, is investigated. Approximate solutions are obtained by applying the method of multiple scales to a single-mode model discretized via the Galerkin procedure and by directly attacking the governing integro-partial-differential equation and boundary conditions with the method of multiple scales. Frequency-response curves for the case of primary resonance of the first mode are generated using both approaches for several buckling levels and are contrasted with experimentally obtained frequency-response curves for two test beams. For high buckling levels above the first crossover point of the beam, the computed frequency-response curves are qualitatively as well as quantitatively different. The experimentally obtained frequency-response curves for the directly excited first mode are in agreement with those obtained with the direct approach and in disagreement with those obtained with the single-mode discretization approach.  相似文献   

14.
The vibration problem of a viscoelastic cylindrical shell is studied in a geometrically nonlinear formulation using the refined Timoshenko theory. The problem is solved by the Bubnov–Galerkin procedure combined with a numerical method based on quadrature formulas. The choice of relaxation kernels is substantiated for solving dynamic problems of viscoelastic systems. The numerical convergence of the Bubnov–Galerkin procedure is examined. The effect of viscoelastic properties of the material on the response of the cylindrical shell is discussed. The results obtained by various theories are compared.  相似文献   

15.
Reduced-Order Models for MEMS Applications   总被引:7,自引:0,他引:7  
We review the development of reduced-order models for MEMS devices. Based on their implementation procedures, we classify these reduced-order models into two broad categories: node and domain methods. Node methods use lower-order approximations of the system matrices found by evaluating the system equations at each node in the discretization mesh. Domain-based methods rely on modal analysis and the Galerkin method to rewrite the system equations in terms of domain-wide modes (eigenfunctions). We summarize the major contributions in the field and discuss the advantages and disadvantages of each implementation. We then present reduced-order models for microbeams and rectangular and circular microplates. Finally, we present reduced-order approaches to model squeeze-film and thermoelastic damping in MEMS and present analytical expressions for the damping coefficients. We validate these models by comparing their results with available theoretical and experimental results.  相似文献   

16.
In this paper, an invariant manifold approach is introduced for the generationof reduced-order models for nonlinear vibrations of multi-degrees-of-freedomsystems. In particular, the invariant manifold approach for defining andconstructing nonlinear normal modes of vibration is extended to the case ofmulti-mode manifolds. The dynamic models obtained from this technique capture the essential coupling between modes of interest, while avoiding coupling fromother modes. Such an approach is useful for modeling complex systemresponses, and is essential when internal resonances exist between modes.The basic theory and a general, constructive methodology for the method arepresented. It is then applied to two example problems, one analytical andthe other finite-element based. Numerical simulation results are obtainedfor the full model and various types of reduced-order models, including theusual projection onto a set of linear modes, and the invariant manifoldapproach developed herein. The results show that the method is capable ofaccurately representing the nonlinear system dynamics with relatively fewdegrees of freedom over a range of vibration amplitudes.  相似文献   

17.
Pellicano  F.  Mastroddi  F. 《Nonlinear dynamics》1997,14(4):335-355
The nonlinear dynamics of a simply supported beam resting on a nonlinear spring bed with cubic stiffness is analyzed. The continuous differential operator describing the mathematical model of the system is discretized through the classical Galerkin procedure and its nonlinear dynamic behavior is investigated using the method of Normal Forms. This model can be regarded as a simple system describing the oscillations of flexural structures vibrating on nonlinear supports and then it can be considered as a simple investigation for the analysis of more complex systems of the same type. Indeed, the possibility of the model to exhibit actually interesting nonlinear phenomena (primary, superharmonic, subharmonic and internal resonances) has been shown in a range of feasibility of the physical parameters. The singular perturbation approach is used to study both the free and the forced oscillations; specifically two parameter families of stationary solutions are obtained for the forced oscillations.  相似文献   

18.
The approximate nonstationary probability density of a nonlinear single-degree-of-freedom (SDOF) oscillator with time delay subject to Gaussian white noises is studied. First, the time-delayed terms are approximated by those without time delay and the original system can be rewritten as a nonlinear stochastic system without time delay. Then, the stochastic averaging method based on generalized harmonic functions is used to obtain the averaged Itô equation for amplitude of the system response and the associated Fokker–Planck–Kolmogorov (FPK) equation governing the nonstationary probability density of amplitude is deduced. Finally, the approximate solution of the nonstationary probability density of amplitude is obtained by applying the Galerkin method. The approximate solution is expressed as a series expansion in terms of a set of properly selected basis functions with time-dependent coefficients. The proposed method is applied to predict the responses of a Van der Pol oscillator and a Duffing oscillator with time delay subject to Gaussian white noise. It is shown that the results obtained by the proposed procedure agree well with those obtained from Monte Carlo simulation of the original systems.  相似文献   

19.
This article presents a reduced-order model (ROM) of the shallow water equations (SWEs) for use in sensitivity analyses and Monte-Carlo type applications. Since, in the real world, some of the physical parameters and initial conditions embedded in free-surface flow problems are difficult to calibrate accurately in practice, the results from numerical hydraulic models are almost always corrupted with uncertainties. The main objective of this work is to derive a ROM that ensures appreciable accuracy and a considerable acceleration in the calculations so that it can be used as a surrogate model for stochastic and sensitivity analyses in real free-surface flow problems. The ROM is derived using the proper orthogonal decomposition (POD) method coupled with Galerkin projections of the SWEs, which are discretised through a finite-volume method. The main difficulty of deriving an efficient ROM is the treatment of the nonlinearities involved in SWEs. Suitable approximations that provide rapid online computations of the nonlinear terms are proposed. The proposed ROM is applied to the simulation of hypothetical flood flows in the Bordeaux breakwater, a portion of the ‘Rivière des Prairies' located near Laval (a suburb of Montreal, Quebec). A series of sensitivity analyses are performed by varying the Manning roughness coefficient and the inflow discharge. The results are satisfactorily compared to those obtained by the full-order finite volume model.  相似文献   

20.
The objective of the present work is to investigate the nonlinear vibrations of the rotating asymmetrical nano-shafts by considering surface effect. In order to compute the surface stress tensor, the surface elasticity theory is used. The governing nonlinear equations of motion are obtained with the aid of variational approach. Bubnov–Galerkin is a very effective method for exploiting the reduced-order model of the equations of motion. The averaging method is employed to analyze the reduced-order model of the system. For this purpose, the well-known Van der Pol transformation in the complex form and angle-action transformation are utilized. The effect of surface stress on the forward and backward speeds, steady state responses of the system, fixed points, close orbits and stability of the solutions is examined. The preliminary results of the research show that the absolute values of forward and backward whirling speeds in the presence of surface effect with positive residual surface stress are higher than those of regarding the system without surface effect and in the presence of surface effect with negative residual surface stress. In addition, it is seen that the undamped rotating asymmetrical nano-shaft, for specified value of detuning parameter, in the absence or presence of surface effect has various number of stable and unstable periodic solutions. Besides, there is different number of separatrix (homoclinic orbit type). Furthermore, bifurcations, number of solutions and their stability for damped rotating asymmetrical nano-shaft are investigated. Also, the above results have been obtained for rotating symmetrical nano-shaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号