首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of [2,3,4,5-Ph(4)(eta(5)-C(4)COH)Ru(CO)(2)H] (2) with different imines afforded ruthenium amine complexes at low temperatures. At higher temperatures in the presence of 2, the complexes decomposed to give [Ru(2)(CO)(4)(mu-H)(C(4)Ph(4)COHOCC(4)Ph(4))] (1) and free amine. Electron-rich imines gave ruthenium amine complexes with 2 at a lower temperature than did electron-deficient imines. The negligible deuterium isotope effect (k(RuHOH)/k(RuDOD) = 1.05) observed in the reaction of 2 with N-phenyl[1-(4-methoxyphenyl)ethylidene]amine (12) shows that neither hydride (RuH) nor proton (OH) is transferred to the imine in the rate-determining step. In the dehydrogenation of N-phenyl-1-phenylethylamine (4) to the corresponding imine 8 by [2,3,4,5-Ph(4)(eta(4)-C(4)CO)Ru(CO)(2)] (A), the kinetic isotope effects observed support a stepwise hydrogen transfer where the isotope effect for C-H cleavage (k(CHNH)/k(CDNH) = 3.24) is equal to the combined (C-H, N-H) isotope effect (k(CHNH)/k(CDND) = 3.26). Hydrogenation of N-methyl(1-phenylethylidene)amine (14) by 2 in the presence of the external amine trap N-methyl-1-(4-methoxyphenyl)ethylamine (16) afforded 90-100% of complex [2,3,4,5-Ph(4)(eta(4)-C(4)CO)]Ru(CO)(2)NH(CH(3))(CHPhCH(3)) (15), which is the complex between ruthenium and the amine newly generated from the imine. At -80 degrees C the reaction of hydride 2 with 4-BnNH-C(6)H(9)=NPh (18), with an internal amine trap, only afforded [2,3,4,5-Ph(4)(eta(4)-C(4)CO)](CO)(2)RuNH(Ph)(C(6)H(10)-4-NHBn) (19), where the ruthenium binds to the amine originating from the imine, showing that neither complex A nor the diamine is formed. Above -8 degrees C complex 19 rearranged to the thermodynamically more stable [Ph(4)(eta(4)-C(4)CO)](CO)(2)RuNH(Bn)(C(6)H(10)-4-NHPh) (20). These results are consistent with an inner sphere mechanism in which the substrate coordinates to ruthenium prior to hydrogen transfer and are difficult to explain with the outer sphere pathway previously proposed.  相似文献   

2.
Reaction of ([2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)CO)](2)H)Ru(2)(CO)(4)(mu-H) (6) with H(2) formed [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COH)Ru(CO)(2)H] (8), the active species in catalytic carbonyl reductions developed by Shvo. Kinetic studies of the reduction of PhCHO by 8 in THF at -10 degrees C showed second-order kinetics with Delta H(double dagger) = 12.0 kcal mol(-1) and Delta S(double dagger) = -28 eu. The rate of reduction was not accelerated by CF(3)CO(2)H, and was not inhibited by CO. Selective deuteration of the RuH and OH positions in 8 gave individual kinetic isotope effects k(RuH)/k(RuD) = 1.5 +/- 0.2 and k(OH)/k(OD) = 2.2 +/- 0.1 for PhCHO reduction at 0 degrees C. Simultaneous deuteration of both positions in 8 gave a combined kinetic isotope effect of k(OHRuH)/k(ODRuD) = 3.6 +/- 0.3. [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COSiEt(3))Ru(CO)(2)H] (12) and NEt(4)(+)[2,5-Ph(2)-3,4-Tol(2)(eta(4)-C(4)CO)Ru(CO)(2)H](-) (13) were unreactive toward PhCHO under conditions where facile PhCHO reduction by 8 occurred. PhCOMe was reduced by 8 30 times slower than PhCHO; MeN=CHPh was reduced by 8 26 times faster than PhCHO. Cyclohexene was reduced to cyclohexane by 8 at 80 degrees C only in the presence of H(2.) Concerted transfer of a proton from OH and hydride from Ru of 8 to carbonyls and imines is proposed.  相似文献   

3.
At high temperatures in toluene, [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COH)]Ru(CO)(2)H (3) undergoes hydrogen elimination in the presence of PPh(3) to produce the ruthenium phosphine complex [2,5-Ph(2)-3,4-Tol(2)-(eta(4)-C(4)CO)]Ru(PPh(3))(CO)(2) (6). In the absence of alcohols, the lack of RuH/OD exchange, a rate law first order in Ru and zero order in phosphine, and kinetic deuterium isotope effects all point to a mechanism involving irreversible formation of a transient dihydrogen ruthenium complex B, loss of H(2) to give unsaturated ruthenium complex A, and trapping by PPh(3) to give 6. DFT calculations showed that a mechanism involving direct transfer of a hydrogen from the CpOH group to form B had too high a barrier to be considered. DFT calculations also indicated that an alcohol or the CpOH group of 3 could provide a low energy pathway for formation of B. PGSE NMR measurements established that 3 is a hydrogen-bonded dimer in toluene, and the first-order kinetics indicate that two molecules of 3 are also involved in the transition state for hydrogen transfer to form B, which is the rate-limiting step. In the presence of ethanol, hydrogen loss from 3 is accelerated and RuD/OH exchange occurs 250 times faster than in its absence. Calculations indicate that the transition state for dihydrogen complex formation involves an ethanol bridge between the acidic CpOH and hydridic RuH of 3; the alcohol facilitates proton transfer and accelerates the reversible formation of dihydrogen complex B. In the presence of EtOH, the rate-limiting step shifts to the loss of hydrogen from B.  相似文献   

4.
Carbon-hydrogen bond cleavage reactions of CH3OH and CH4 by a dirhodium(II) diporphyrin complex with a m-xylyl tether (.Rh(m-xylyl)Rh.(1)) are reported. Kinetic-mechanistic studies show that the substrate reactions are bimolecular and occur through the use of two Rh(II) centers in the molecular unit of 1. Second-order rate constants (T = 296 K) for the reactions of 1 with methanol (k(CH3OH) = 1.45 x 10-2 M-1 s-1) and methane (k(CH4) = 0.105 M-1 s-1) show a clear kinetic preference for the methane activation process. The methanol and methane reactions with 1 have large kinetic isotope effects (k(CH3OH)/k(CD3OD) = 9.7 +/- 0.8, k(CH4)/k(CD4) = 10.8 +/- 1.0, T = 296 K), consistent with a rate-limiting step of C-H bond homolysis through a linear transition state. Activation parameters for reaction of 1 with methanol (DeltaH = 15.6 +/- 1.0 kcal mol-1; DeltaS = -14 +/- 5 cal K-1 mol-1) and methane (DeltaH = 9.8 +/- 0.5 kcal mol-1; DeltaS = -30 +/- 3 cal K-1 mol-1) are reported.  相似文献   

5.
Reduction of imines by [2,5-Ph2-3,4-Tol2(eta(5)-C4COH)]Ru(CO)2H (2) produces kinetically stable ruthenium amine complexes. Reduction of an imine by 2 in the presence of an external amine trap gives only the complex of the newly generated amine. Reaction of 2 with H2N-p-C6H4N=CHPh (11), which contains an intramolecular amine trap, gave a 1:1 mixture of [2,5-Ph2-3,4-Tol2(eta(4)-C4CO)](CO)2RuNH(CH2Ph)(C6H4-p-NH2) (8), formed by coordination of the newly generated amine to the ruthenium center, and [2,5-Ph2-3,4-Tol2(eta(4)-C4CO)](CO)2RuNH2C6H4-p-NHCH2Ph (9), formed by coordination of the amine already present in the substrate. These results require transfer of hydrogen to the imine outside the coordination sphere of the metal to give a coordinatively unsaturated intermediate that can be trapped inside the initial solvent cage. Amine diffusion from the solvent cage must be much slower than coordination to the metal center. Mechanisms requiring prior coordination of the substrate to ruthenium would have led only to 8 and can be eliminated.  相似文献   

6.
We report rate coefficients for the relaxation of OH(v=1) and OD(v=1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10(-12) cm3 molecule-1 s-1) can be expressed as: for OH(v=1)+H2O between 263 and 390 K: k=(2.4+/-0.9) exp((460+/-115)/T); for OH(v=1)+D2O between 256 and 371 K: k=(0.49+/-0.16) exp((610+/-90)/T); for OD(v=1)+H2O between 251 and 371 K: k=(0.92+/-0.16) exp((485+/-48)/T); for OD(v=1)+D2O between 253 and 366 K: k=(2.57+/-0.09) exp((342+/-10)/T). Rate coefficients at (297+/-1 K) are also reported for the relaxation of OH(v=2) by D2O and the relaxation of OD(v=2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O-HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O-HO, D2O-HO, H2O-DO and D2O-DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates-assuming that relaxation proceeds via the hydrogen-bonded complexes.  相似文献   

7.
A relative rate experiment is carried out for six isotopologues of methanol and their reactions with OH and Cl radicals. The reaction rates of CH2DOH, CHD2OH, CD3OH, (13)CH3OH, and CH3(18)OH with Cl and OH radicals are measured by long-path FTIR spectroscopy relative to CH3OH at 298 +/- 2 K and 1013 +/- 10 mbar. The OH source in the reaction chamber is photolysis of ozone to produce O((1)D) in the presence of a large excess of molecular hydrogen: O((1)D) + H2 --> OH + H. Cl is produced by the photolysis of Cl2. The FTIR spectra are fitted using a nonlinear least-squares spectral fitting method with measured high-resolution infrared spectra as references. The relative reaction rates defined as alpha = k(light)/k(heavy) are determined to be: k(OH + CH3OH)/k(OH + (13)CH3OH) = 1.031 +/- 0.020, k(OH + CH3OH)/k(OH + CH3(18)OH) = 1.017 +/- 0.012, k(OH + CH3OH)/k(OH + CH2DOH) = 1.119 +/- 0.045, k(OH + CH3OH)/k(OH + CHD2OH) = 1.326 +/- 0.021 and k(OH + CH3OH)/k(OH + CD3OH) = 2.566 +/- 0.042, k(Cl + CH3OH)/k(Cl + (13)CH3OH) = 1.055 +/- 0.016, k(Cl + CH3OH)/k(Cl + CH3(18)OH) = 1.025 +/- 0.022, k(Cl + CH3OH)/k(Cl + CH2DOH) = 1.162 +/- 0.022 and k(Cl + CH3OH)/k(Cl + CHD2OH) = 1.536 +/- 0.060, and k(Cl + CH3OH)/k(Cl + CD3OH) = 3.011 +/- 0.059. The errors represent 2sigma from the statistical analyses and do not include possible systematic errors. Ground-state potential energy hypersurfaces of the reactions were investigated in quantum chemistry calculations at the CCSD(T) level of theory with an extrapolated basis set. The (2)H, (13)C, and (18)O kinetic isotope effects of the OH and Cl reactions with CH3OH were further investigated using canonical variational transition state theory with small curvature tunneling and compared to experimental measurements as well as to those observed in CH4 and several other substituted methane species.  相似文献   

8.
Reduction of imines by [2,5-Ph2-3,4-Tol(2)(eta(5)-C(4)COH)]Ru(CO)2H (1) produces kinetically stable ruthenium amine complexes. Reduction of an imine possessing an intramolecular amine was studied to distinguish between inner sphere and outer sphere mechanisms. 1,4-Bn(15)NH(c-C(6)H(10))=NBn (12) was reduced by 1 in toluene-d8 to give 85% of [2,5-Ph2-3,4-Tol(2)(eta(4)-C(4)CO)](CO)(2)RuNHBn(c-C(6)H(10))(15)NHBn (16-RuN,15N), resulting from coordination of the newly formed amine to the ruthenium center, and 15% of trapping product [2,5-Ph2-3,4-Tol(2)(eta(4)-C(4)CO)](CO)(2)Ru(15)NHBn(c-C(6)H(10))NHBn (16-Ru(15)N,N), resulting from coordination of the intramolecular trapping amine. These results provide support for an outer sphere transfer of hydrogen to the imine to generate a coordinatively unsaturated intermediate, which can be trapped by the intramolecular amine. An opposing mechanism, requiring coordination of the imine nitrogen to ruthenium prior to hydrogen transfer, cannot readily explain the observation of the trapping product 16-Ru(15)N,N.  相似文献   

9.
An NMR study of the rates of hydroxide-promoted hydrolysis of formamide in aqueous media of varying mole fraction D(2)O (n) was performed at [LO(-)] = 1.42 M, T = 25 degrees C, to shed light on whether the mechanism involves a nucleophilic attack of HO(-) on the C=O or HO(-) acting as a general base to remove a proton from an attacking water. The solvent deuterium kinetic isotope effect under these conditions is inverse, k(OH)/k(OD) = 0.77 +/- 0.02 or k(OD)/k(OH) = 1.30 +/- 0.03. Proton inventory analysis of the k(n)() versus n data was undertaken through NLLSQ fits to equations representing four possible mechanisms encompassing nucleophilic and general base ones with waters of solvation on the attacking hydroxide, and with or without waters of solvation on the developing amide hydrate oxyanion. Both nucleophilic and general base mechanisms can be accommodated, but there are restraints on each that are discussed. The preferred mechanism is a nucleophilic one proceeding through a transition state having two solvating waters remaining on the attacking hydroxide and three additional waters attached to the developing amide hydrate oxyanion.  相似文献   

10.
The reactions of OH + HBr and all isotopic variants have been measured in a pulsed supersonic Laval nozzle flow reactor between 53 and 135 K, using a pulsed DC discharge to create the radical species and laser induced fluorescence on the A 2sigma <-- X 2pi (v' = 1 <-- v' = 0) transition. All reactions are found to possess an inverse temperature dependence, in accord with previous work, and are fit to the form k = A(T/298)(-n), with k1 (OH + HBr) = (10.84 +/- 0.31) x 10(-12) (T/298)(-0.67+/-0.02) cm3/s, k2 (OD + HBr) = (6.43 +/- 2.60) x 10(-12) (T/298)(-1.19+/-0.26) cm3/s, k3 (OH + DBr) = (5.89 +/- 1.93) x 10(-12) (T/298)(-0.76+/-0.22) cm3/s, and k4 (OD + DBr) = (4.71 +/- 1.56) x 10(-12) (T/298)(-1.09+/-0.21) cm3/s. A global fit of k vs T over the temperature range 23-360 K, including the new OH + HBr data, yields kT = (1.06 +/- 0.02) x 10(-11) (T/298)(-0.90+/-0.11) cm3/s, and (0.96 +/- 0.02) x 10(-11) (T/298)(-0.90+/-0.03) exp((-2.88+/-1.82 K)/T) cm3/s, in accord with previous fits. In addition, the primary and secondary kinetic isotope effects are found to be independent of temperature within experimental error over the range investigated and take on the value of (kH/kD)(AVG) = 1.64 for the primary effect and (kH/kD)(AVG) = 0.87 for the secondary effect. These results are discussed within the context of current experimental and theoretical work.  相似文献   

11.
A laser flash photolysis-resonance fluorescence technique has been employed to determine absolute rate coefficients for the CH3F + Cl reaction in N2 bath gas in the temperature range of 200-700 K and pressure range of 33-133 hPa. The data were fitted to a modified Arrhenius expression k(T) = 1.14 x 10(-12) x (T/298)2.26 exp{-313/T}. The OH and Cl reaction rates of (13)CH3F and CD3F have been measured by long-path FTIR spectroscopy relative to CH3F at 298 +/- 2 K and 1013 +/- 10 hPa in purified air. The FTIR spectra were fitted using a nonlinear least-squares spectral fitting method including line data from the HITRAN database and measured infrared spectra as references. The relative reaction rates defined by alpha = k(light)/k(heavy) were determined to be k(OH+CH3F)/k(OH+CD3F) = 4.067 +/- 0.018, k(OH+CH3F)/k(OH+(13)CH3F) = 1.067 +/- 0.006, k(Cl+CH3F)/k(Cl+CD3F) = 5.11 +/- 0.07, and k(Cl+CH3F)/k(Cl+(13)CH3F) = 1.016 +/- 0.006. The carbon-13 and deuterium kinetic isotope effects in the OH and Cl reactions of CH3F have been further investigated by quantum chemistry methods and variational transition state theory.  相似文献   

12.
Observed pseudo-first-order rate constants (k(obs)) of the hydride-transfer reactions from isopropyl alcohol (i-PrOH) to two NAD(+) analogues, 9-phenylxanthylium ion (PhXn(+)) and 10-methylacridinium ion (MA(+)), were determined at temperatures ranging from 49 to 82 degrees C in i-PrOH containing various amounts of AN or water. Formations of the alcohol-cation ether adducts (ROPr-i) were observed as side equilibria. The equilibrium constants for the conversion of PhXn(+) to PhXnOPr-i in i-PrOH/AN (v/v = 1) were determined, and the equilibrium isotope effect (EIE = K(i-PrOH)/K(i-PrOD)) at 62 degrees C was calculated to be 2.67. The k(H) of the hydride-transfer step for both reactions were calculated on the basis of the k(obs) and K. The corresponding deuterium kinetic isotope effects (e.g., KIE(OD)(H) = k(H)(i-PrOH)/k(H)(i-PrOD) and KIE(beta-D6)(H) = k(obs)(i-PrOH)/k(obs)((CD3)2CHOH)), as well as the activation parameters, were derived. For the reaction of PhXn(+) (62 degrees C) and MA(+) (67 degrees C), primary KIE(alpha-D)(H) (4.4 and 2.1, respectively) as well as secondary KIE(OD)(H) (1.07 and 1.18) and KIE(beta-D6)(H) (1.1 and 1.5) were observed. The observed EIE and KIE(OD)(H) were explained in terms of the fractionation factors for deuterium between OH and OH(+)(OH(delta+)) sites. The observed inverse kinetic solvent isotope effect for the reaction of PhXn(+) (k(obs)(i-PrOH)/k(obs)(i-PrOD) = 0.39) is consistent with the intermolecular hydride-transfer mechanism. The dramatic reduction of the reaction rate for MA(+), when the water or i-PrOH cosolvent was replaced by AN, suggests that the hydride-transfer T.S. is stabilized by H-bonding between O of the solvent OH and the substrate alcohol OH(delta+). This result suggests an H-bonding stabilization effect on the T.S. of the alcohol dehydrogenase reactions.  相似文献   

13.
Arrhenius rate expressions were determined for beta-scission of phenoxyl radical from 1-phenyl-2-phenoxyethanol-1-yl, PhC*(OH)CH2OPh (V). Ketyl radical V was competitively trapped by thiophenol to yield PhCH(OH)CH2OPh in competition with beta-scission to yield phenoxyl radical and acetophenone. A basis rate expression for hydrogen atom abstraction by sec-phenethyl alcohol, PhC*(OH)CH3, from thiophenol, log(k(abs)/M(-1) s(-1)) = (8.88 +/- 0.24) - (6.07 +/- 0.34)/theta, theta = 2.303RT, was determined by competing hydrogen atom abstraction with radical self-termination. Self-termination rates for PhC*(OH)CH3 were calculated using the Smoluchowski equation employing experimental diffusion coefficients of the parent alcohol, PhCH(OH)CH3, as a model for the radical. The hydrogen abstraction basis reaction was employed to determine the activation barrier for the beta-scission of phenoxyl from 1-phenyl-2-phenoxyethanol-1-yl (V): log(k beta)/s(-1)) = (12.85 +/- 0.22) - (15.06 +/- 0.38)/theta, k beta (298 K) ca. (64.0 s(-1) in benzene), and log(k beta /s(-1)) = (12.50 +/- 0.18) - (14.46 +/- 0.30)/theta, k beta (298 K) = 78.7 s(-1) in benzene containing 0.8 M 2-propanol. B3LYP/cc-PVTZ electronic structure calculations predict that intramolecular hydrogen bonding between the alpha-OH and the -OPh leaving group of ketyl radical (V) stabilizes both ground- and transition-state structures. The computed activation barrier, 14.9 kcal/mol, is in good agreement with the experimental activation barrier.  相似文献   

14.
Experimental studies have been conducted to determine the rate coefficient and mechanism of the reaction between methylglyoxal (CH(3)COCHO, MGLY) and the OH radical over a wide range of temperatures (233-500 K) and pressures (5-300 Torr). The rate coefficient is pressure independent with the following temperature dependence: k(3)(T) = (1.83 +/- 0.48) x 10(-12) exp((560 +/- 70)/T) cm(3) molecule(-1) s(-1) (95% uncertainties). Addition of O(2) to the system leads to recycling of OH. The mechanism was investigated by varying the experimental conditions ([O(2)], [MGLY], temperature and pressure), and by modelling based on a G3X potential energy surface, rovibrational prior distribution calculations and master equation RRKM calculations. The mechanism can be described as follows: Addition of oxygen to the system shows that process (4) is fast and that CH(3)COCO completely dissociates. The acetyl radical formed from reaction (4) reacts with oxygen to regenerate OH radicals (5a). However, a significant fraction of acetyl radical formed by reaction (R4) is sufficiently energised to dissociate further to CH(3) + CO (R4b). Little or no pressure quenching of reaction (R4b) was observed. The rate coefficient for OD + MGLY was measured as k(9)(T) = (9.4 +/- 2.4) x 10(-13) exp((780 +/- 70)/T) cm(3) molecule(-1) s(-1) over the temperature range 233-500 K. The reaction shows a noticeable inverse (k(H)/k(D) < 1) kinetic isotope effect below room temperature and a slight normal kinetic isotope effect (k(H)/k(D) > 1) at high temperature. The potential atmospheric implications of this work are discussed.  相似文献   

15.
Kinetic studies of the ruthenium-catalyzed dehydrogenation of 1-(4-fluorophenyl)ethanol (4) by tetrafluorobenzoquinone (7) using the Shvo catalyst 1 at 70 degrees C show that the dehydrogenation by catalytic intermediate 2 is rate-determining with the rate = k[4][1](1/2) and with deltaH++ = 17.7 kcal mol(-1) and deltaS++ = -13.0 eu. The use of specifically deuterated derivative 4-CHOD and 4-CDOH gave individual isotope effects of k(CHOH)/k(CHOD) = 1.87 +/- 0.17 and k(CHOH)/k(CDOH) = 2.57 +/- 0.26, respectively. Dideuterated derivative 4-CDOD gave a combined isotope effect of k(CHOH)/k(CDOD) = 4.61 +/- 0.37. These isotope effects are consistent with a concerted transfer of both hydrogens of the alcohol to ruthenium species 2.  相似文献   

16.
The kinetics of the SmI(2)/H(2)O/amine-mediated reduction of 1-chlorodecane has been studied in detail. The rate of reaction is first order in amine and 1-chlorodecane, second order in SmI(2), and zero order in H(2)O. Initial rate studies of more than 20 different amines show a correlation between the base strength (pK(BH+) of the amine and the logarithm of the observed initial rate, in agreement with Bronsted catalysis rate law. To obtain the activation parameters, the rate constant for the reduction was determined at different temperatures (0 to +40 degrees C, DeltaH++ = 32.4 +/- 0.8 kJ mol(-1), DeltaS++ = -148 +/- 1 J K(-1) mol(-1), and DeltaG++(298K) = 76.4 +/- 1.2 kJ mol(-1)). Additionally, the (13)C kinetic isotope effects (KIE) were determined for the reduction of 1-iododecane and 1-bromodecane. Primary (13)C KIEs (k(12)/k(13), 20 degrees C) of 1.037 +/- 0.007 and 1.062 +/- 0.015, respectively, were determined for these reductions. This shows that cleavage of the carbon-halide bond occurs in the rate-determining step. A mechanism of the SmI(2)/H(2)O/amine-mediated reduction of alkyl halides is proposed on the basis of these results.  相似文献   

17.
Multiple isotope effects have been measured for the acid-catalyzed hydrolysis of methyl formate in 0.5 M HCl at 20 degrees C. The isotope effects in the present investigation include the carbonyl carbon (13k = 1.028 +/- 0.001), the carbonyl oxygen (18k = 0.9945 +/- 0.0009), the nucleophile oxygen (18k = 0.995 +/- 0.001), and the formyl hydrogen ((D)k = 0.81 +/- 0.02). Determination of the carbonyl carbon, carbonyl oxygen, and formyl hydrogen isotope effects was performed via isotopic analysis of residual substrate. However, determination of the oxygen nucleophile isotope effect required analysis of the oxygen atoms of the product (formic acid), which exchange with the solvent (water) under acid conditions. This necessitated measurement of the rate of exchange of these oxygen atoms under the conditions for hydrolysis (k(ex) = 0.0723 min(-1)) and correction of the raw isotope ratios measured during the nucleophile-O isotope effect experiment. These results, along with the previously reported isotope effect for the leaving oxygen (18k = 1.0009) and the ratio of the rate of hydrolysis to that of exchange of the carbonyl oxygen with water (k(h)/k(ex) = 11.3), give a detailed picture of the transition-state structure for the reaction.  相似文献   

18.
The oxidation of alkanes and arylalkanes by KMnO(4) in CH(3)CN is greatly accelerated by the presence of just a few equivalents of BF(3), the reaction occurring readily at room temperature. Carbonyl compounds are the predominant products in the oxidation of secondary C-H bonds. Spectrophotometric and kinetics studies show that BF(3) forms an adduct with KMnO(4) in CH(3)CN, [BF(3).MnO(4)](-), which is the active species responsible for the oxidation of C-H bonds. The rate constant for the oxidation of toluene by [BF(3).MnO(4)](-) is over 7 orders of magnitude faster than by MnO(4)(-) alone. The kinetic isotope effects for the oxidation of cyclohexane, toluene, and ethylbenzene at 25.0 degrees C are as follows: k(C6H12)/k(C6D12) = 5.3 +/- 0.6, k(C7H8)/k(C7D8) = 6.8 +/- 0.5, k(C8H10)/k(C8D10) = 7.1 +/- 0.5. The rate-limiting step for all of these reactions is most likely hydrogen-atom transfer from the substrate to an oxo group of the adduct. A good linear correlation between log(rate constant) and C-H bond energies of the hydrocarbons is found. The accelerating effect of BF(3) on the oxidation of methane by MnO(4)(-) has been studied computationally by the Density Functional Theory (DFT) method. A significant decrease in the reaction barrier results from BF(3) coordination to MnO(4)(-). The BF(3) coordination increases the ability of the Mn metal center to achieve a d(1) Mn(VI) electron configuration in the transition state. Calculations also indicate that the species [2BF(3).MnO(4)](-) is more reactive than [BF(3).MnO(4)](-).  相似文献   

19.
The oxidation of hydroxylamine by [IrCl6]2- has been studied spectrophotometrically in deoxygenated aqueous solutions in the range of pH 4-9 at 25 degrees C. The reaction is catalyzed by Cu2+, Fe2+, and impurities of aquochloroiridium complexes. Oxalate is a very effective inhibitor of catalysis by copper and iron ions. With excess hydroxylamine, the reaction follows pseudo-first-order kinetics, and the stoichiometric ratio (DeltanIr(IV)/Deltanhydroxylamine) is 1.05 at pH 5.9. Over the pH range 4.2-8.8, the empirical rate law is -d[IrCl(6)2-]/dt=k[IrCl6(2-)][NH2OH]tot, with k=k1Ka1/([H+]+Ka1)+k'Ka1/([H+]([H+]+Ka1)), where Ka1 is the dissociation constant of NH3OH+. Least-squares fitting yields k1=(17.05+/-0.47) M-1 s(-1) and k'=(2.59+/-0.09)x10(-6) s(-1) at ionic strength of 0.1 M (adjusted by NaClO4) and 25 degrees C. The kinetic isotope effects (KIE) (kH/kD) for k1 and k' are 4.4 and 9.8, correspondingly. A mechanism is inferred in which k1 corresponds to concerted proton-coupled electron transfer (PCET) and k' corresponds to electron transfer from NH2O-. In this mechanism, the large KIE for k' is due almost entirely to the equilibrium isotope effect for the pKa of NH2OH.  相似文献   

20.
The N-methylquinolinium tetrafluoroborate (NMQ(+))-sensitized photolysis of the erythro-1,2-diphenyl-2-arylsulfanylethanols 1-3 (1, aryl = phenyl; 2, aryl = 4-methylphenyl; 3, aryl = 3-chlorophenyl) has been investigated in MeCN, under laser flash and steady-state photolysis. Under laser irradiation, the formation of sulfide radical cations of 1-3, in the monomeric (lambda(max) = 520-540 nm) and dimeric form (lambda(max) = 720-->800 nm), was observed within the laser pulse. The radical cations decayed by first-order kinetics, and under nitrogen, the formation of ArSCH(*)Ph (lambda(max) = 350-360 nm) was clearly observed. This indicates that the decay of the radical cation is due to a fragmentation process involving the heterolytic C-C bond cleavage, a conclusion fully confirmed by steady-state photolysis experiments (formation of benzaldehyde and the dimer of the alpha-arylsulfanyl carbon radical). Whereas the fragmentation rate decreases as the C-C bond dissociation energy (BDE) increases, no rate change was observed by the replacement of OH by OD in the sulfide radical cation (k(OH)/k(OD) = 1). This suggests a transition state structure with partial C-C bond cleavage where the main effect of the OH group is the stabilization of the transition state by hydrogen bonding with the solvent. The fragmentation rate of 2-hydroxy sulfanyl radical cations turned out to be significantly slower than that of nitrogen analogues of comparable reduction potential, probably due to a more efficient overlap between the SOMO in the heteroatom and the C-C bond sigma-orbital in the second case. The fragmentation rates of 1(+*)-3(+*) were found to increase by addition of a pyridine, and plots of k(base) against base strength were linear, allowing calculation of the beta Bronsted values, which were found to increase as the reduction potential of the radical cation decreases, beta = 0.21 (3(+*)), 0.34 (1(+*)), and 0.48 (2(+*)). The reactions of 1(+*) exhibit a deuterium kinetic isotope effect with values that increase as the base strength increases: k(OH)/k(OD) = 1.3 (pyridine), 1.9 (4-ethylpyridine), and 2.3 (4-methoxypyridine). This finding and the observation that with the above three bases the rate decreases in the order 3(+*) > 1(+*) > 2(+*), i.e., as the C-C BDE increases, suggest that C-C and O-H bond cleavages are concerted but not synchronous, with the role of OH bond breaking increasing as the base becomes stronger (variable transition state). It is probable that, with the much stronger base, 4-(dimethylamino)pyridine, a change to a stepwise mechanism may occur where the slow step is the formation of a radical zwitterion that then rapidly fragmentates to products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号