首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Apparent molar heat capacities and volumes have been determined for aqueous solutions of the mixed electrolytes Na5DTPA + NaOH, Na3CuDTPA + NaOH, and NaCu2DTPA + NaOH, and the single electrolyte Na3H2DTPA (DTPA=diethylenetriaminepentaacetic acid) at temperatures from 10 to 55°C. The experimental results have been analyzed in terms of Young's rule with the Guggenheim form of the extended Debye–Hückel equation and the Pitzer ion-interaction model. These calculations led to standard partial molar heat capacities and volumes for the species H2DTPA3–(aq), DTPA5–(aq), CuDTPA3–(aq), and Cu2DTPA(aq) at each temperature. The partial molar properties at 0.1 m ionic strength were also calculated. The standard partial molar properties were extrapolated to elevated temperatures with the revised Helgeson–Kirkham–Flowers (HKF) model. Values for the partial molar heat capacities from the HKF model have been combined with the literature data to estimate the ionization constants of H2DTPA3–(aq) and the formation constant of the CuDTPA3–(aq) copper complex at temperatures up to 300°C.  相似文献   

2.
A Picker flow microcalorimeter and a flow densimeter were used to obtain apparent molar heat capacities and apparent molar volumes of aqueous solutions of Na3PO4 and mixtures of Na2HPO4 and NaH2PO4. Identical measurements were also made on solutions of tetramethylammonium salts to evaluate the importance of anion-cation interaction. The experimental apparent molar properties were analyzed in terms of a simple extended Debye-Hückel model and the Pitzer ion-interaction model, both with a suitable treatment for the effect of chemical relaxation on heat capacities, to derive the partial molar properties of H2PO 4 (aq), HPO 4 2– (aq) and PO 4 3– (aq) at infinite dilution. The volume and heat capacity changes for the second and third ionization of H3PO4(aq) have been determined from the experimental data. The importance of ionic complexation with sodium is discussed.  相似文献   

3.
Apparent molar heat capacities and volumes have been determined for aqueous Na2HNTA, Na3NTA, NaMgNTA, NaCoNTA, NaNiNTA and NaCuNTA at 25 °C. The experimental results have been analyzed in terms of Young’s rule with an extended Debye–Hückel equation to obtain standard partial molar heat capacities C p o and volumes V o for the species HNTA2−(aq), NTA3−(aq), MgNTA(aq), CoNTA(aq), NiNTA(aq) and CuNTA(aq), at ionic strengths I = 0 and I = 0.1 mol⋅kg−1. Values of C p o and V o were combined with the literature data to estimate the stability constants of the NTA complexes at temperatures up to 100 °C.  相似文献   

4.
A flow microcalorimeter/densimeter system has been commissioned to measure heat capacities and densities of solutions containing radioactive species as a function of temperature. Measurements were made for NaTcO4(aq) at six temperatures (189.15 K to 373.15 K for the heat capacities, 287.43 K to 396.67 K for the densities) over the molality range 0.01 to 0.29 mol-kg–1. Measurements for NaReO4(aq) (NaReO4 is a common nonradioactive analogue for NaTcO4) were made under similar conditions, but for eight temperatures and a more extensive range of molalities, 0.05 to 0.65 mol-kg–1. Heat capacities of NaCl(aq) reference solutions were also measured from 293.15 K to 398.15 K.The heat capacity and density data are analysed using Pitzer's ioninteraction model. Equations for the apparent molar heat capacities and volumes are reported. Values of the NaReO4(aq) partial molar heat capacities are compared to literature values based on integral heats of solution. The agreement between the two sets of NaReO4 results is good below 330 K, but only fair at the higher temperatures. Values of the partial molar volumes have also been derived. Using literature values and the results of our experiments, it is calculated that the disproportionation of hydrated TcO2(s) to form TcO 4 (aq) and Tc(cr) occurs more readily at high temperatures. The uncertainties introduced by using thermodynamic values for ReO 4 (aq), in the absence of values for TcO 4 (aq), are discussed.  相似文献   

5.
Partial molar heat capacities and volumes of some nucleic acid bases, nucleosides and nucleotides have been measured in 1m aqueous NaCl and CaCl2 solutions using Picker flow microcalorimeter and a vibrating tube digital densimeter. The partial molar heat capacities of transfer and volumes of transfer from water to the electrolyte solutions were calculated using earlier data for these compounds in water. The values of these transfer parameters are positive. The higher values for transfer to aqueous CaCl2 solutions reflect the stronger interactions of the constituents of the nucleic acids with Ca+2 ions than with the Na+ ions.  相似文献   

6.
Heat capacities of aqueous solutions of phosphoric acid from 0.1 to 0.8 mol- kg-1 and sulfur dioxide from 0.2 to 0.9 mol-kg-1 have been measured with a flow heat-capacity calorimeter from 303 to 623 K and a pressure of 28 MPa. At the lowest molality single-solute solutions as well as mixtures of either H3PO4 or SO2 with HC1 were measured to repress dissociation. Calculated apparent molar heat capacities were corrected for dissociation reactions and the chemical relaxation effect. Experimental results for mixtures were analyzed using Young’s rule. Standard state partial molar heat capacities of H3PO4(aq) and SO2(aq) were obtained by extrapolation to infinite dilution. A few measurements of the densities of aqueous H3PO4 and SO2 were made at 25°C and a pressure of 28 MPa.  相似文献   

7.
Apparent molar volumes and heat capacities of 27 electrolytes have been measured as a function of concentration in formamide at 25°C using a series-connected flow densimeter and Picker calorimeter system. These data were extrapolated to infinite dilution using the appropriate Debye–Hückel limiting slopes to give the corresponding standard partial molar quantities. Ionic volumes and heat capacities at infinite dilution were obtained by an appropriate assumption based on the reference electrolyte Ph4PBPh4 (TPTB). The ionic volumes, but not the heat capacities, agree reasonably well with previously published statistically based predictions. The values obtained are discussed in terms of simple models of electrolyte solution behavior and a number of interesting features are noted, including, possible dependencies of ionic volumes on solvent isothermal compressibility and of ionic heat capacities on solvent electron acceptor abilities.  相似文献   

8.
Partial molar volumes, V 2 o , and partial molar heat capacities, C p,2 o , of the tripeptides glycylglycylglycine, glycylglycylalanine, glycylalanylglycine and alanylglycylglycine have been determined in aqueous solution at 25°C. For the three alanyl-containing tripeptides, the data indicate that the tripeptide-water interaction is influenced by the side chain position within the molecule. The results have been rationalized in terms of likely solutesolvent interactions. The V 2 o and C p.2 o data have also been used to calculate the contribution to these properties of a-CH3 side chain.  相似文献   

9.
Chemical equilibrium constants for the ionization of aqueous glycolic acid (hydroxyacetic acid, HOCH2COOH) have been measured at temperatures 25–250 C and pressure p = 4.5 MPa, using UV-visible spectroscopy with a high-pressure flow cell and thermally-stable colorimetric pH indicators. These are the first experimental values for the ionization constant of glycolic acid above 100 C that have been reported. The results have been combined with recently determined values for the standard partial molar volumes of HOCH2COOH(aq) and HOCH2COO(aq) under hydrothermal conditions to develop an “equation of state” that describes the temperature- and pressure-dependence of the equilibrium constant and standard partial molar properties of ionization from 25 to 325 C.  相似文献   

10.
Relative densities and massic heat capacities have been measured for acidified aqueous solutions of YCl3(aq), YbCl3(aq), DyCl3(aq), SmCl3(aq), and GdCl3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. These measurements have been used to calculate experimental apparent molar volumes and heat capacities which, when used in conjunction with Young’s rule, were used to calculate the apparent molar properties of the aqueous chloride salt solutions. The latter calculations required the use of volumetric and thermochemical data for aqueous solutions of hydrochloric acid that have been previously reported in the literature. The concentration dependences of the apparent molar properties have been modeled using Pitzer ion interaction equations to yield apparent molar volumes and heat capacities at infinite dilution. The temperature and concentration dependences of the apparent molar volumes and heat capacities of each trivalent salt system were modeled using modified Pitzer ion interaction equations. These equations utilized the revised Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences of apparent molar volumes and heat capacities at infinite dilution. Calculated apparent molar volumes and heat capacities at infinite dilution have been used to calculate single ion properties for the investigated trivalent metal cations. These values have been compared to those previously reported in the literature. The differences between single ion values calculated in this study and those values calculated from thermodynamic data for aqueous perchlorate salts are also discussed.  相似文献   

11.
Apparent molar heat capacities and volumes of aqueous Ni(C104)2 were measured from 25 to 85°C over a concentration range of 0.02 to 0.8 mol-kg-1 using a Picker flow microcalorimeter and a Picker vibrating-tube densimeter. An extended Debye-Hückel equation was fitted to the experimental data to obtain expressions for the apparent molar properties as functions of ionic strength for Ni(ClO4)2(aq). The standard-state partial molar properties for Ni(C104)2(aq) in the temperature range 25 to 85°C were obtained and can be expressed by empirical equations as 97787 and withT in K. The standard partial molar heat capacities and volumes for Ni2+ (aq) from 25 to 86°C were obtained by using the additivity rule and data for ClO- 4(aq) in the literature. These values were extrapolated to 300°C by employing the Helgeson-Kirkham-Flower (HKF) equations, amended to include a standard-state correction term.  相似文献   

12.
The partial molar volumes, V2 ^, and the partial molar heat capacities, Cp,2 ^, at infinite dilution have been determined for three new peptides of sequence seryl(glycyl)xglycine, where x=0 to 2, in aqueous solution at 25^C. Values for V2 ^ at 25°C have also been determined for two neutral peptide derivatives N-acetylglycylglycinamide and N-acetylglycylglycylglycinamide. These V2 °; and Cp,2 °; results were used to estimate the partial molar volume and heat capacity of the backbone glycyl group, CH2CONH, of proteins in aqueous solution at 25°;C. The results obtained are compared with those calculated using partial molar data for alternative model compounds. The new glycyl group contributions are in excellent agreement with those currently used in our group additivity schemes for the calculation of the partial molar volumes and heat capacities of unfolded proteins.  相似文献   

13.
Densities and apparent molar heat capacities of some alkylated derivatives of uracil and adenine: 1-methyluracil, 1,3-dimethyluracil, 1,3-diethylthymine, 5,6-trimethylene-1,3-dimethyluracil, 5,6-tetramethylene-1,3-dimethyluracil, 5,6-pentamethylene-1,3-dimethyluracil, 2,9-dimethyladenine, 2-ethyl-9-methyladenine, 2-propyl-9-methyladenine, 8-ethyl-9-methyladenine, 6,8,9-trimethyladenine and 8-ethyl-6,9-dimethyladenine were determined using flow calorimetry and flow densimetry at 25°C. It was found that the partial molar volumes and heat capacities correlate linearly with the number of substituted methylene groups-CH 2 -as well as to the number of hydrogen atoms, n H , belonging to the skeleton of the molecule. In the case of alkylated uracils a difference was observed in the values at infinite dilution V 2 o and C p2 o , depending on the substitution of alkyl and cyclooligomethylene groups.  相似文献   

14.
Relative densities of NaCF3SO3(aq) at molalities 0.073 ≤ m/(mol-kg-1) ≤ 1.68 were measured with vibrating-tube densimeters from 283 K to 600 K and from 0.1 MPa to 20 MPa. Relative densities of HCF3SO3(aq) at molalities 0.12 < m/(mol-kg-1) < 2.1 were determined at temperatures from 283 K to 328 K at 0.1 MPa. Apparent molar volumes calculated from the measured densities were represented by the Pitzer ion-interaction treatment. The temperature and pressure dependence of the standard partial molar volume and the second virial coefficients in the Pitzer equation were expressed by empirical expressions in which the compression coefficient of water and temperature were used as independent variables. The conventional standard partial molar volumes V‡(CF3SO 3 - , aq) fromT = 283 K to 573 K were calculated from the experimental values for V‡(NaCF3SO3, aq) and known values for V‡(Na+, aq). The values of V‡(CF3SO3/-, aq) at temperatures from 283 K to 328 K obtained from the values of V‡(NaCF3SO3, aq) and V‡(HCF3SO3, aq) agree to within 1.2 cm3-mol-1.  相似文献   

15.
Partial molar volumes, V 2 o and partial molar heat capacities C p,2 o have been determined in aqueous solution at 25°C for the dipeptides glycyl-L-asparagine, glycyl-DL-threonine, glycyl-DL-serine and glycyl-DL-phenylalanine. These results, along with those for some other dipeptides of sequence Gly-X, were used to estimate side chain contributions to V 2 o and C p,2 o . For these dipeptides both V 2 o and C p,2 o were found to be a linear function of the respective thermodynamic property for the amino acid X. The contributions of the glycyl units to V 2 o and C p,2 o of the dipeptide are discussed.  相似文献   

16.
Apparent molar heat capacities and volumes of amylamine (PentNH2) 0.02m, capronitrile (PentCN) 0.02m and nitropentane (PentNO2) 0.009m in decyltrimethylammonium bromide (DeTAB) micellar solutions, in water and in octane were measured at 25°C. By assuming that their concentration approaches the standard infinite dilution state, heat capacities and volumes were rationalized by means of previously reported equations following which the distribution constant between the aqueous and the micellar phase and heat capacity and volume of the additives in both phases are simultaneously derived. The present results are compared to those we have previously obtained for pentanol (PentOH). The thermodynamic properties of PentNH2 in water and in micellar phase are substantially identical to those of PentOH but different from those of PentCN and PentNO2 whereas the opposite behavior was observed in their pure liquid state and in octane. The nature of the solvent medium seems to affect the thermodynamic behavior of PentNH2. Also, the study of the apparent molar heat capacities of the amyl compounds investigated here in micellar solutions as a function of surfactant concentration shows evidence of a maximum at about 0.4m DeTAB, which can be attributed to a micellar structural transition. Accordingly, the solubilities of PentCN and PentNO2 as a function of the DeTAB concentration drop in the neighborhood of the concentration where heat capacities display the maximum.  相似文献   

17.
Densities and specific heat capacities of aqueous solutions: 1,3,5,6-tetramethyluracil, 1,6-dimethyl-3-ethyluracil, 1,6-dimethyl-3-propyluracil, 1,6-dimethyl-3-butyluracil, 1,N4-trimethylcytosine, 1,N4-dimethyl-5-ethylcytosine, 1,N4 dimethyl-5-propylcytosine, 1,N4-dimethyl-5-butylcytosine were determined using flow calorimetry and flow densimetry at 25°C. Apparent molar volumes and heat capacities, van der Waals volumes and accessible surface areas were determined. It was stated that for alkylcytosines and alkyluracils partial molar volumes and heat capacities correlate linearly with the number of substituted methylene groups-CH2-as well as with the van der Waals volumes and accessible surface areas of the compounds studied; for cyclooligouracils the cyclization effect was discussed.  相似文献   

18.
The densities of mixtures ofN-methylformamide (NMF) and water (W) have been measured at 5, 15, 25, 35, and 45°C, and the heat capacities of the same system at 25°C, both over the whole mole-fraction range. From the experimental data the apparent molar volumes (v) and heat capacities (c) of NMF and of water are evaluated. The relatively small difference between the partial molar volumes or heat capacities at infinite dilution and the corresponding molar volumes or heat capacities of the pure liquids for both NMF and water suggests that with regard to these quantities replacement of a NMF molecule by a water molecule or vice versa produces no drastic changes. The partial molar volume of water at infinite dilution in NMF is smaller than the molar volume of pure water, but the corresponding partial molar heat capacity is unexpectedly high.  相似文献   

19.
We have used a flow calorimeter and a flow densimeter for measurements leading to apparent molar heat capacities and apparent molar volumes of aqueous solutions of Cd(ClO4)2, Ca(ClO4)2, Co(ClO4)2, Mn(ClO4)2, Ni(ClO4)2, and Zn(ClO4)2. The resulting apparent molar quantities have been extrapolated to infinite dilution to obtain the corresponding standardstate apparent and partial molar heat capacities and volumes. These latter values have been used for calculation of conventional ionic heat capacities and volumes.  相似文献   

20.
We have used a flow calorimeter and a flow densimeter for measurements leading to apparent molar heat capacities and apparent molar volumes of dilute aqueous solutions of NaIO3, KMnO4, and MnCl2 at 25°C. These apparent molar quantities have been extrapolated to infinite dilution to obtain the corresponding standard state apparent and partial molar heat capacities and volumes. which have then been used for the calculation of conventional ionic heat capacities and volumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号