首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five treatments consisting of three vehicle contact pressures, 62, 41 and 31 kPa (0.63, 0.42, 0.32 kg/cm2), four numbers of tractor passes (1, 5, 10, 15,) before and after seeding groups, and a control of zero traffic were used to study the effect of soil compaction on corn plant root growth and distribution in a Ste. Rodalie clay soil. The average dry bulk density values for 0–20 cm depths measured during the season varied from a minimum of 0.89 g/cm3 to a maximum of 1.12 g/cm3 depending on the severity of the treatment. Root distribution maps were obtained for all the treatments by field measurements coupled with root washing methods. An average root density of 5.7 mg/g of soil in an uncompacted control plot was reduced to less than 2 mg/g in a plot with 15 passes of 0.63 kg/cm2 contact pressure. Soil penetration resistance values in various plots were compared, and a statistical model was obtained in terms of the traffic treatments, soil moisture content and depth. Yield reductions and penetration resistance were compared to root distrubution density results.  相似文献   

2.
To determine and compare the differences in soil water suction between uncropped and cropped plots, a 52-plot experiment was used. Three average tyre to soil contact pressures of 31, 41 and 62 kPa as well as four numbers of machines passes (1, 5, 10 and 15) and control plots of zero traffic were used as pre-seeding machinery compaction treatments for the investigation. Soil dry bulk density, soil moisture content, soil suction, rainfall, water table depth and corn yield were all measured. The results showed that, with increasing tyre contact pressure, there was a corresponding increase in soil suction during the growing season in both uncropped and cropped plots. A family of curves was drawn for soil suction versus tyre contact pressure for different numbers of days and also for soil suction versus volumetric water content at varying contact pressures and times of the season. Growth performance of corn plants was best in moderately compacted plots. Dry bulk density and penetrometer resistance were related to traffic treatments.  相似文献   

3.
Traffic tests were conducted at two sites in northern Alaska with an air cushion vehicle, two light tracked vehicles, and three types of wheeled Rolligon vehicles. The traffic impact (surface depression, effect on thaw depth, damage to vegetation, traffic signature visibility) was monitored for periods of up to 10 years. Data show the immediate and long-term effects from the various types of vehicles for up to 50 traffic passes and the rates of recovery of the active layer. The air cushion vehicle produced the least impact. Multiple passes with the Rolligons caused longer-lasting damage than the light tracked vehicles because of their higher ground contact pressure and wider area of disturbance. Recovery occurs even if the initial depression of the tundra surface by a track or a wheel is quite deep (15 cm), as long as the organic mat is not sheared or destroyed.  相似文献   

4.
Research was conducted to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop models to assess compaction in agricultural soils. Experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely: clay soil (CS), silty clay loam soil (SCLS), and silty loam soil (SLS). A dimensional analysis technique was used to develop the compaction models. The axle load and the number of tire passes proved to be the most dominant factors which influenced compaction. Up to 13% increase in bulk density and cone index were observed when working at 3 kN axle load in a single pass using a 8.0–16 tire. Most of the compaction occurred during the first three passes of the tire. It was also found that the aspect ratio, tire inflation pressure and soil moisture content have significant effect on soil compaction. The initial cone index did not show significant effect. The compaction models provided good predictions even when tested with actual field data from previous studies. Thus, using the models, a decision support system could be developed which may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific compaction problems.  相似文献   

5.
Increased soil compaction following harvest traffic is an inroad for adverse changes in soil biological properties and processes, soil microbial activity, bacterial communities, and growth and development of plant roots. This study investigated the impacts of three levels of traffic intensity (3–6, 7–14, and 15+ passes) of a Timberjack 450C skidder on changes in several chemical soil properties at two levels of skid trail slope gradients (gentle =<20% and steep >20% inclination) in the Hyrcanian forest. Skidding increased soil bulk density between 19% and 39% and, averaged over both slope gradients, reduced amounts of soil organic carbon (33–67%), concentrations of nitrogen (51–80%), phosphorous (0–17%), potassium (11–36%), and hydrogen ions (78–98%) compared to undisturbed areas. Most soil damage occurred after a few skidder passes, particularly on steep slopes that generally experienced the highest level of soil deterioration. The primary mechanism that induced immediate chemical soil changes was an uplift and exposure of deeper soil layers in response to compression and displacement of the former soil surface. Skidding can jeopardize the sustainability of forest ecosystems by creating unfavorable changes in soil characteristics and nutrient status.  相似文献   

6.
Soil compactions are widely dispersed in the world but tend to be the most prevalent, where heavy machinery is used in agriculture. The increasing use of heavy machinery is the primary cause of soil and subsoil compaction. The impact of subsoil compaction on root growth and yield of wheat (Triticum aestivum L) were evaluated during 2006 and 2007. Sub-soil compactions were created by three normal loads, i.e. 4.40, 6.40 and 8.40 kg and four number of passes of tractor, i.e. 1, 6, 11 and 16. The field was divided into 39 plots including a control plot, i.e. no passes of the tractor. The size of each plot was 400 square meter. A factorial randomized block design was followed in laying out the experiment and care was taken that all the 13 treatments and their replications are included in field experiments. It was observed that for all the compaction treatments in the field experiment on the wheat crop, 51–61% of wheat roots were confined in 0–15 cm, 17–20% in 15–30 cm and the rest 22–28% is below 30 cm soil layer. Sub-soil compaction reduced the wheat crop yields to a maximum of 23%. A statistical model is developed to predict crop yield considering the root length density of the crop. Average root diameters increased with the increase of the sub-soil compaction level. In sub-soil zone, average root diameter decreased with the increase of sub-soil compaction level.  相似文献   

7.
Experiments were conducted on a Eudora silt loam to determine the effect of tracked and wheeled tractor traffic on cone penetration resistance and soil bulk density at three different soil-water content levels. Treatment plots were ripped to a depth of 0.45 m and irrigated 5 days prior to the experiment. Significant differences in penetration resistance and bulk density were observed between the treatments within the plowing depth (0.30 m). After the tractor passes, the average penetration resistance recorded was about 7.5% higher and the soil bulk density was about 3% higher in the wheel treatment plots. However, at the soil-water content level close to Proctor optimum (15% w/w), no significant difference was observed in the average penetration resistance of the two treatments.  相似文献   

8.
以工程实例为研究对象,建立了整车-整桥系统耦合振动数值分析模型。考虑车轮的跳轨和挤密情况,建立了单边弹簧-阻尼系统弹性轮轨接触模型。采用基于多体系统动力学和有限元法结合的联合仿真技术,计算了两种轮轨接触时动车组列车以不同车速通过大跨度连续桥梁的耦合振动响应。数值计算结果表明:两种轮轨接触模型的桥梁动力响应比较接近;列车的横向轮轨力、轮重减载率和脱轨系数相差较大,当速度为350km/h时,横向轮轨力增大了46.5%,轮重减载率增大了130.8%,脱轨系数增大了24.66%;用单边-弹簧阻尼系统弹性轮轨接触模型更符合实际。  相似文献   

9.
This paper visualizes and analyzes an effect of a wheel camber angle for the slope traversability in sandy terrain. An in-wheel camera developed in this work captures the wheel-soil contact phenomenon generated beneath the wheel through a transparent section of the wheel surface. The images taken by the camera are then analyzed using the particle image velocimetry. The soil flows with various wheel camber angles are analyzed with regard to the soil failure observed on the slope surface. The analysis reveals that the slope failure and soil accumulation in front of the wheel significantly affect the wheel forces and distributions of the wheel sinkage in the wheel width direction. Further, the side force of the wheel in traversing a slope decreases as the slip ratio increases because the shear stress in the slope downward direction decreases owing to the slope failure.  相似文献   

10.
Nowadays soft soil–wheel contact models are widely used for predicting the mobility of rovers in off-road applications. However, most of the contact models used in computer simulations are based on semi-empirical laws for which soil parameters can be assessed only with large uncertainty. This lack of knowledge results in significant uncertainty on the rover position predictions. Applied to a planetary rover model, this paper illustrates probabilistic and non-probabilistic techniques for efficient treatment of soil parameter uncertainty for rover position predictions.  相似文献   

11.
Based on Biot’s fully dynamic poroelastic theory, the dynamic responses of the poroelastic half-space soil medium due to quasi-static and dynamic loads from a moving train are investigated semi-analytically. The dynamic loads are assumed to be generated from the rail surface irregularities. The vehicle dynamics model is used to simulate the axle loads (quasi-static loads) and the dynamic loads from a moving train. The compatibility of the displacements at wheel–rail contact points couple the vehicle and the track–ground subsystem, and yield equations for the dynamic wheel–rail loads. A linearized Hertzian contact spring between the wheel and rail is introduced to calculate the dynamic loads. Using the Fourier transform, the governing equations for the poroelastic half-space are then solved in the frequency–wavenumber domain. The time domain responses are evaluated by the fast inverse Fourier transform. Numerical results show that the dynamic loads can make important contribution to dynamic response of the poroelastic half-space for different train speed, and the dynamically induced responses lie in a higher frequency range. The ground vibrations caused by the moving train can be intensified as the primary suspension stiffness of the vehicle increases.  相似文献   

12.
Most of the current lunar rover vehicle wheels are inconvenient for changing broken wheels and have poor shock absorbing in driving, so they cannot be used to carry people on the moon. To meet the demands for manned lunar transportation, a new wheel possessing a woven metal wire mesh tire and using hub-rim combination slide mechanism is designed in this article. The characteristics of the new wheel is analyzed by comparing with the same-size conventional rover wheels after demonstrating the validity of FEM simulation. The new wheel possesses lighter structure and superior shock absorbing. It also provides stronger traction because the deformation of the designed wheel increases the contact area between the tire and lunar terrain. In order to establish an on-line soil parameter estimation algorithm for low cohesion soil, the stress distribution along a driven deformable wheel on off-road terrain is simplified. The basic mechanics equations of the interaction between the wheel and the lunar soil can be used for analytical analysis. Simulation results show that the soil estimation algorithm can accurately and efficiently identify key soil parameters for loose sand.  相似文献   

13.
This paper reports about measurements of the contact area of agricultuural tires in a soil bin. Four tires of the dimensions 12.5/80-18, 13.6–28, 16.9–34 and 16.9–26 were tested on a soft sandy loam. Because the existing models for predicting the footprint are complicated, a simplified model has been established, yielding good results. Measured different contact areas of all four tires are nearly constant related to wheel load except for a small increase at higher loads. Using rated loads and applying the appropriate inflation pressure, the ground pressure of a group of similar tires in loose sandy loam is independent of the tire dimensions. Measured soil compaction under at tire a various wheel loads is compared with results obtained by a mathematical model.  相似文献   

14.
应用轮轨型面测量仪测量实际运用中的磨耗后机车车轮,基于标准与磨耗后机车车轮型面,建立轮轨接触三维有限元模型,计算分析不同横移量下的接触斑和等效应力. 搭建轮轨接触试验台,使用取自现场的车轮与钢轨试块进行试验,分析不同横移量下轮轨接触状态. 针对磨耗前后车轮与标准钢轨接触的有限元计算与试验进行对比分析. 结果表明:横移量对轮轨接触状态有着显著的影响,横移量过大会加速机车车轮的磨耗;与标准型面相比,磨耗后车轮型面与标准钢轨接触时的接触斑面积较大,最大等效应力较小;通过轮轨接触试验台所得接触斑形状和大小与仿真计算所得结果一致性较好,证明了有限元仿真计算的可靠性.   相似文献   

15.
The CRREL Instrumented Vehicle (CIV), shear annulus, direct shear and triaxial compression devices were used to characterize the strength of thawed and thawing soil. Strength was evaluated in terms of the Mohr-Coulomb failure parameters c′ and φ′, which can be used in simple models to predict the tractive performance of vehicles. Use of an instrumented wheel (like those of the CIV) is proposed for terrain strength characterization for traction prediction because the conditions created by a tire slipping on a soil surface are exactly duplicated. The c′ and φ′ values from a portable shear annulus overpredict traction because of the curved nature of the soil failure envelope in the region of low normal stress applied by a portable annulus. Of all the tests, the direct shear test yielded the highest φ′ value, due to its slow deformation rate and drained conditions. The triaxial test produced results closest to those of the instrumented wheel. For all methods, φ′ increases with soil moisture but decreases rapidly beyond the liquid limit of the soil. The φ′ measured with the vehicle was also found to be strongly influenced by the freeze-thaw layering of the soil.  相似文献   

16.
Evaluation of vertical stress distribution in clay-loam soil using Smoothed-Particle Hydrodynamics-Finite Element Analysis (SPH-FEA) technique is presented in this research. The moist soil is modelled using the hydrodynamic elastic–plastic material and Murnaghan equation of state, while the tire is modelled using FEA in Visual Environment’s Pam-Crash software. Soil-tire interaction is performed using the node symmetric node to segment with edge treatment method. A single-wheel tester in a soil bin environment was utilized to provide experimental data. The objectives of the experimental test were to (1) calculate maximum subsoil stresses in the subsoil at 1 to 15 passes of a wheel with loads of 1, 2, 4, and 5 kN on soil with moisture levels of 0, 10, 17, and 24%.; (2) calibrate soil with different levels of moisture (3) compare predicted soil stresses with experiments. The maximum stress at 20 cm depth increased with increasing soil moisture and also with high levels of tire load. In contrast, successive traffic showed a decreasing effect on soil stress. The coefficient of determination 0.97 shows the predictions agreed very well with experiments. The moist soil-tire interaction model will be further used to analyze the soil stress in different soil depths and different forward velocity.  相似文献   

17.
A study was conducted to determine the accuracy of Wismer-Luth and Brixius equations in predicting net traction ratio of a high-lug agricultural tyre. The tyre was tested on a sandy clay loam soil in an indoor University Putra Malaysia (UPM) tyre traction testing facility. The experiment was conducted by running the tyre in driving mode. A total of 126 test runs were conducted in a combination consisting of three selected inflation pressures (i.e., 166, 193 and 221 kPa) and two wheel numerics (i.e., 19 and 29) representing two extreme types of soil strength under different levels of travel reduction ranging between 0% and 40%. Regression analysis was conducted to determine the prediction equation describing the tyre torque ratio. Marqurdt’s method used by Wismer-Luth for predicting non-linear equation was not found suitable in predicting the torque ratio of the test tyre awing its low coefficient of determination and inadequacy. The logarithmic model was found suitable in torque ration prediction. From analysis of covariance (ANCOVA) the mean effect of travel speed, tyre inflation pressure and wheel numeric on tyre net traction ratio were found to be highly significant, while the interaction of inflation pressure and wheel numeric was not significant. The 193 kPa inflation pressure was found the best, among the three inflation pressures used, in getting higher net traction ratio and higher maximum efficiency. Finally, two models were formulated for tyre net traction ratio; one in terms of wheel numeric and travel speed reduction and the other in terms of mobility number and travel reduction, to describe the tested tyre performance at different soil strengths.  相似文献   

18.
The behaviour of soils under a vehicle wheel was determined by measuring the density, moisture content, and the position of the data point. From the several thousands of data points, statistical models were established for dry density in terms of external pressure, moisture content, and position. The effect of slip was also obtained at the required situations. Separate models were determined for sand, sandy loam, loamy sand, and clay. For every soil type, there exists an optimum moisture content for worst compaction. Considering this, models were obtained for various categories.  相似文献   

19.
Bearing capacity of the unstructured terrain considering the effects of the wheel geometry and soil mechanic properties is analyzed in this paper. Two-dimensional pressure-sinkage simulations are conducted to evaluate the degrees of similarity between the flat plate and wheel in terms of their ultimate bearing characteristics of Terzaghi theory. The results show that these degrees of similarity are mainly reflected in the soil in-depth direction and the corresponding failure behaviors. Based on the approximation of the ultimate bearing capacity between the wheel and flat plate, a piecewise bearing capacity evaluation method with the effects of the soil mechanic properties and three-dimensional wheel geometry is proposed. The pressure-sinkage values of the proposed model show a satisfactory agreement with the experimental ones. The proposed model performs better than the semi-empirical models, as it considers more soil bearing features and needs less fitting parameters to assess the unstructured terrain.  相似文献   

20.
To investigate influences of gravity on mobility of wheeled rovers for future lunar/planetary exploration missions, model experiments of a soil-wheel system were performed on an aircraft during variable gravity maneuvers. The experimental set-up consists of a single rigid wheel and a soil bed with two kinds of dry sands: lunar soil simulant and Toyoura sand. The experimental results revealed that a lower gravity environment yields higher wheel slippage in variable gravity conditions. In addition to the partial gravity experiments, the same experiments with variable wheel load levels were also performed on ground (1 g conditions). The on-ground experiments produced opposite results to those obtained in the partial gravity experiments, where a lower wheel load yields lower slippage in a constant gravity environment. In low gravity environments, fluidity (flowability) of soil increases due to the confining stress reduction in the soil, while the effect of the wheel load on sinkage decreases. As a result, both of these effects are canceled out, and gravity seemingly has no effect on the wheel sinkage. In the meantime, in addition to the effect of wheel load reduction, the increase of the soil flowability lessens the shear resistance to the wheel rotation, as a result of which the wheel is unable to hold sufficient traction in low gravity environments. This suggests that the mobility of the wheel is governed concurrently by two mechanisms: the bearing characteristics to the wheel load, and the shearing characteristics to the wheel rotation. It appears that, in low gravity, the wheel mobility deteriorates due to the relative decrease in the driving force while the wheel sinkage remains constant. Thus, it can be concluded that the lunar and/or Mars’ gravity environments will be unfavorable in terms of the mobility performance of wheels as compared to the earth’s gravity condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号