首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stepwise addition of one equivalent of n-butyllithium and trimethylsilyl chloride to 2-tert-butylmercaptoaniline affords the new ligand 1-(Me3SiNH)-2-(t-BuS)C6H4 (LH), that reacts with one equivalent of butyllithium to its lithium salt LLi. Dioxodichloromolybdenum [MoO2Cl2] and dioxodichlorotungsten dimethoxyethane [WO2Cl2(dme)] react in tetrahydrofuran solution at low temperature with two equivalents LLi to monomeric dioxomolybdenum(VI) [MoO2L2] (1) and dioxotungsten(VI) complex [WO2L2] (2) employing two bidentate amido thioether ligands. The crystallographic determination of the molecular structures of 1 and 2 show evidence for M...S contacts. The reaction of [MoO2Cl2] with LLi in tetrahydrofuran solution at room temperature leads next to 1 to two compounds where silyl group migration from nitrogen to oxygen atoms occurs forming [Mo(=NL')2(OSiMe)2] (3) and [Mo(=NL')2(OSiMe3)L] (4, L' = N-2-t-BuSC6H4) as determined by NMR spectroscopy. Compound 4 was isolated in low yield and its molecular structure determined by X-ray crystallography. Higher yields of a bisimido complex can be obtained by the direct reaction of one equivalent of LLi with [Mo(NAr)2Cl2(dme)] (Ar = 2,6-Me2C6H4) forming [Mo(NAr)2LCl] (5).  相似文献   

3.
Equimolar reactions of the derivatives of ((2-hydroxynapthalen-1-yl)methylene)aniline with methyltrioxorhenium (MTO) lead to complexes 14, where MTO is coordinated via the oxygen of the former hydroxyl-group to MTO. The resulting complexes are very stable but not particularly catalytically active if no electron acceptor resides on the Schiff base. The electron withdrawing groups placed on the Schiff base ligand have the effect of increasing the catalytic activity but somewhat decrease the complex stability.  相似文献   

4.
The tetramethylammonium salts (NMe4)2[MO2(2,3-Hdhb)2]·2H2O and (NMe4)2[MO2(3,4-Hdhb)2]·6H2O (M = Mo, W; Hdhb = monoprotonated form of 2,3- or 3,4-dihydroxybenzoic acid, 2,3-H3dhb or 3,4-H3dhb) were prepared and their crystal structures determined. The structure of [Mg(H2O)6](NMe4)4[MoO2(3,4-dhb)(3,4-Hdhb)]2·13H2O, obtained by the recrystallization of (NMe4)2[MoO2(3,4-Hdhb)2] in the presence of magnesium ions, is also reported. The supramolecular interactions of the five structures are discussed in detail concerning the hydrogen bonding patterns involving complexes and water molecules of crystallization.  相似文献   

5.
The reaction of a solution of MoO2(acac)2 in CH3OH and salicylidene 2-picoloyl hydrazone as a tridentate ONO donor Schiff base (ONO) afford a six-coordinated Mo(VI) complex [MoO2(ONO)(CH3OH)], with a distorted octahedral configuration. [MoO2(ONO)(CH3OH)] was isolated as an air-stable crystalline solid and fully characterized by single-crystal X-ray structure analysis. [MoO2(ONO)(CH3OH)] shows reactivity in the oxidation of sulfides to their corresponding sulfoxides using urea hydrogen peroxide as the oxidant at room temperature under air.  相似文献   

6.
The catalytic performances of several bis(acetylacetonato)metal complexes [Cu(acac)2, Zn(acac)2, TiO(acac)2, VO(acac)2, MoO2(acac)2, and WO2(acac)2] were investigated for the crosslinking reaction via transesterifications in the ethylene‐vinyl acetate copolymer/tetraethoxysilane (EVA/TEOS) composite system by means of dynamic attenuated total reflectance Fourier transform infrared, solvent swelling, and solid‐state 29Si cross polarization/magic angle spinning nuclear magnetic resonance techniques. Results of the kinetic examination revealed that MoO2(acac)2 and WO2(acac)2 exhibited a higher catalytic activity than di‐n‐butyltin(IV) oxide, which is a catalyst most commonly used for the transesterification process in polymer system, but has a toxic effect on the environmental health. And furthermore, the crosslink density and final siloxane network structure of crosslinked EVA/TEOS composites are found to be greatly correlated with the catalyst used. On the basis of the SN2‐Si pathway, a plausible catalytic mechanism of MoO2(acac)2 and WO2(acac)2 was proposed for the crosslinking reaction via transesterifications of the vinyl acetate moieties in EVA backbone with the ethoxysilane groups in one TEOS molecule. The findings in this study may fill the blank in the high performance and environmentally friendly catalyst in the field of the crosslinking reactions in polymer system and provide useful clue for other transesterifications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
New complexes of MoO2(VI), WO2(VI), Th(IV) and UO2(VI) with aroyl hydrazones have been prepared and characterized by various physicochemical methods. Elemental analysis suggested 1 : 1 metal : ligand stoichiometry for MoO2(VI), WO2(VI), and UO2(VI) complexes whereas 1 : 2 for Th(VI) complexes. The physicochemical studies showed that MoO2(VI), Th(IV) and UO2(VI) complexes are octahedral. The electrical conductivity of these complexes lies in the range 1.00 × 10−7−3.37 × 10−11Ω−1 cm−1 at 373 K. The complexes were found to be quite stable and decomposition of the complexes ended with respective metal oxide as a final product. The thermal dehydration and decomposition of these complexes were studied kinetically using both Coats-Redfern and Horowitz-Metzger methods. It was found that the thermal decomposition of the complexes follow first order kinetics. The thermodynamic parameters of the decomposition are also reported. The biological activities of ligands and their metal complexes were tested against various microorganisms.  相似文献   

8.
9.
Uranyl complexes of the type [UO2L2B], where L is the enolate of acetoacetanilide, and B a monodentate base like pyridine, picoline, aniline or N-substituted aniline, have been synthesised and characterised by analysis, conductance and magnetic measurements, thermal, IR and NMR spectral studies. The order of thermal stability and features of IR spectra of the series have been explained. Pentagonal bipyramidal structure has been assigned for the complexes based on the NMR spectral evidence.  相似文献   

10.
Dialkyl(aryl)cyclobutenylphosphine oxides are obtained via two routes: from the corresponding cyclobutenylphosphonic dichlorides using organomagnesium chemistry and from 1,3-dienylphosphine oxides by thermal electrocyclic ring closure.  相似文献   

11.
Complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3, py or pip; L = dianion of the Schiff bases derived from the condensation of salicyloyl hydrazide with acetone, ethyl methyl ketone and salicylaldehyde have been synthesised by the reaction of equimolar amounts of [RuHCl(CO)(EPh3)2(B)] and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (i.r., electronic, n.m.r.) data. The arrangements of Ph3P groups around the Ru metal was determined from 31P-n.m.r. spectra. An octahedral structure has been assigned to all the new complexes. All the complexes exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant.  相似文献   

12.
Dioxomolybdenum(VI) complexes with the general formula [MoO2X2(N,N)] (X = Cl, OSiPh3) containing a chiral bidentate oxazoline ligand (N,N = 2,2′-bis[(4S)-4-benzyl-2-oxazoline]) have been prepared and characterised by 1H NMR, IR spectroscopy and thermogravimetric analysis. The bis(chloro) complex was heterogenised in the ordered mesoporous silica MCM-41 by direct grafting in dichloromethane. Elemental analysis and 29Si MAS NMR spectroscopy of the derivatised material indicated the presence of monopodally anchored species of the type MoO2[(–O)3SiO]Cl(N,N). The complex [MoO2Cl2(N,N)] and the derivatised material exhibited initial activities of 147 and , respectively, in the catalytic epoxidation of cyclooctene using tert-butylhydroperoxide (tBuOOH) as the oxidant, both yielding 1,2-epoxycyclooctane quantitatively within 24 h at 55 °C. The MCM-41 grafted catalyst could be recycled with no loss in performance with respect to the epoxide yields obtained for reaction times above 2 h. With trans-β-methylstyrene as the substrate, the bis(chloro) complex and the derivatised material gave epoxides as the only products with yields in the range of 56–64% after 24 h, but no catalytic asymmetric induction was observed. The triphenylsiloxy complex was more active than the bis(chloro) complex for the epoxidation of trans-β-methylstyrene, but the enantiomeric excess was negligible and the corresponding diols were also formed. For the reaction catalysed by the supported material, changing the oxidant from tBuOOH to cumene hydroperoxide greatly improved the catalytic activity but the enantiomeric excess continued very low and the corresponding diol was the main product.  相似文献   

13.
Three dimeric cis-dioxomolybdenum(VI) complexes of bis-bidentate Schiff base derivatives containing aromatic nitrogen–nitrogen linkers (4,4′-diaminodiphenylmethane; 4,4′-diaminodiphenylether; 4,4′-diaminodiphenylsulfone) with 2-hydroxy-1-naphthaldehyde have been synthesised and characterized by physico-chemical and spectroscopic methods. The catalytic activities of the complexes with respect to alkene epoxidation using tert-butylhydroperoxide (TBHP) as oxidant have been studied. The addition of single wall nanotubes can enhance the catalytic activities of the Mo complexes and the selectivity of epoxide formation.  相似文献   

14.
15.
The novel molybdenum(IV) compound [MoO(NCMe)5][B(C6F5)4]2 (1a) has been prepared by air oxidation of [Mo(CO)3(NCMe)3] in the presence of [H(OEt2)2][B(C6F5)4] at room temperature. The [MoO(NCMe)5]2+ cation shows a distorted octahedral configuration with two different acetonitrile-metal bond lengths due to a trans effect of the oxo-ligand. The trans-acetonitrile ligand is easily abstracted under oil pump vacuum to form [MoO(NCMe)4][B(C6F5)4]2 (1b). The complex [MoO(NCPh)4][B(C6F5)4]2 (2) is formed by substitution of acetonitrile ligands of 1a with benzonitrile molecules. The Mo(IV) complexes can be applied in the homopolymerization of isobutene at 30 °C leading to high yields and moderate molecular weights.  相似文献   

16.
The complex [MoO(2)Cl{HC(3,5-Me(2)pz)(3)}]BF(4) (1) (HC(3,5-Me(2)pz)(3) = tris(3,5-dimethyl-1-pyrazolyl)methane) has been prepared and examined as a catalyst for epoxidation of olefins at 55 °C using tert-butyl hydroperoxide (TBHP) as the oxidant. For reaction of cis-cyclooctene, epoxycyclooctane is obtained quantitatively within 5 h when water is rigorously excluded from the reaction mixture. Increasing amounts of water in the reaction mixture lead to lower activities (without affecting product selectivity) and transformation of 1 into the trioxidomolybdenum(VI) complex [{HC(3,5-Me(2)pz)(3)}MoO(3)] (4). Complex 4 was isolated as a microcrystalline solid by refluxing a suspension of 1 in water. The powder X-ray diffraction pattern of 4 can be indexed in the orthorhombic Pnma system, with a = 16.7349(5) ?, b = 13.6380(4) ?, and c = 7.8513(3) ?. Treatment of 1 in dichloromethane with excess TBHP led to isolation of the symmetrical [Mo(2)O(4)(μ(2)-O){HC(3,5-Me(2)pz)(3)}(2)](BF(4))(2) (2) and unsymmetrical [Mo(2)O(3)(O(2))(2)(μ(2)-O)(H(2)O){HC(3,5-Me(2)pz)(3)}] (3) oxido-bridged dimers, which were characterized by single-crystal X-ray diffraction. Complex 2 displays the well-known (Mo(2)O(5))(2+) bridging structure where each dioxidomolybdenum(VI) center is coordinated to three N atoms of the organic ligand and one μ(2)-bridging O atom. The unusual complex 3 comprises dioxido and oxidodiperoxo molybdenum(VI) centers linked by a μ(2)-bridging O atom, with the former center being coordinated to the tridentate N-ligand. The dinuclear complexes exhibit a similar catalytic performance to that found for mononuclear 1. For complexes 1 and 2 use of the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate and N-butyl-3-methylpyridinium tetrafluoroborate as solvents allowed the complexes to be completely dissolved, and in each case the catalyst and IL could be recycled and reused without loss of activity.  相似文献   

17.
18.

Abstract  

Uranium(VI) peroxo complexes of composition [UO(O2)L–L(NO3)2], where L–L are the Mannich base ligands morpholinobenzyl urea, piperidinobenzyl urea, morpholinobenzyl thiourea, piperidinobenzyl thiourea, morpholinomethyl thiourea, piperidinomethyl thiourea, or morpholinomethyl urea, are reported. The synthesized complexes were characterized by use of a variety of physicochemical techniques, viz. elemental analysis, molar conductivity, magnetic susceptibility measurements, IR, electronic, mass, 1H NMR, and 13C NMR spectroscopy, and TGA/DTA studies. These studies revealed that the complexes are both non-electrolytic and diamagnetic in nature. The ligands are bound to the metal in a bidentate mode through carbonyl oxygen or thiocarbonyl sulfur and the ring nitrogen. Mass spectra confirm the molecular mass of the complexes. The antifungal activity of the complexes is greater than that of the corresponding free ligands.  相似文献   

19.
Six oxodiperoxotungsten(VI) complexes, [WO(O2)2L–L] (where L–L?=?morpholinobenzyl benzamide (MBB), piperidinobenzyl benzamide (PBB), piperidinobenzyl urea (PBU), morpholinobenzyl urea (MBU), piperidinobenzyl thiourea (PBTU) and morpholinobenzyl thiourea (MBTU)) have been prepared by stirring WO3?·?H2O with excess 30% aqueous (w/v) H2O2 and then treating with an ethanolic solution of the Mannich base ligand (L–L). These have been characterized by elemental analysis, conductance and magnetic susceptibility measurements, IR spectra, electronic spectra, 1H NMR, TGA/DTA and cyclic voltammetric studies. These complexes are non-electrolytes and diamagnetic in nature. The ligands are bound to metal in a bidentate mode through carbonyl oxygen/thiocarbonyl sulphur and the ring nitrogen. The complexes also inhibit the growth of pathogen “Fusarium Spp.” up to 60%. The cyclic voltammograms of the complexes indicate quasi-reversible redox steps involving complexes.  相似文献   

20.
Two new dioxomolybdenum(VI) complexes, [MoO2(L1)] n · 0.5 n CH3OH (I) and [MoO2(L2)(CH3OH)] (II), where L1 and L2 are the dianionic form of N′-[1-(4-diethylamino-2-hydroxyphenyl)methylidene]isonicotinohydrazide and N′-(2-hydroxy-4-methoxybenzylidene)-3-methylbenzohydrazide, respectively, were prepared and structurally characterized by physicochemical and spectroscopic methods and single-crystal X-ray determination. For complex I, a polymeric structure is obtained, which is linked by coordination of the pyridine N atoms to the Mo atoms of other [MoO2(L1)] units. Complex II is a mononuclear molybdenum compound. In both complexes, the Mo atoms are in octahedral coordination. The catalytic properties of the complexes indicate that they are efficient catalysts for sulfoxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号