首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new half-sandwich cyclopentadienyl ruthenium(II) complexes containing α-amino acids, [CpRu(PPh3)2(Ser)] (Ser = l-serine) and [CpRu(PPh3)(Met)] (Met = l-methionine), were synthesized and characterized by physicochemical methods. Interactions of these two complexes with calf thymus DNA were investigated by UV–Vis absorption spectroscopy, emission spectroscopy and competitive binding studies. The results indicate that both complexes can interact with DNA, leading to the damage of the double helix. [CpRu(PPh3)2(Ser)] binds to DNA by intercalation, while the binding mode for [CpRu(PPh3)(Met)] is more complicated due to the formation of an EB-DNA-complex (EB = ethidium bromide). The affinity of the Met complex for DNA is stronger than that of the Ser complex, which could be due to groove–surface combination or electrostatic interaction in addition to intercalative binding.  相似文献   

2.
In aqueous solution ruthenium trichloride reacted with picolinic acid (Hpic) in the presence of a base to afford [Ru(pic)3]. In solution it shows intense ligand-to-metal charge transfer transitions near 310 and 370 nm, together with a low-intensity absorption near 2000 nm. [Ru(pic)3] is one-electron paramagnetic and shows a rhombic ESR spectrum in 1:1 dimethylsulphoxide-methanol solution at 77 K. The distortions from octahedral symmetry have been calculated by ESR data analysis. The axial distortion is larger than the rhombic one. In acetonitrile solution it shows a reversible ruthenium(III)-ruthenium(II) reduction at −0.09 V vs. SCE and a reversible ruthenium(III)-ruthenium(IV) oxidation at 1.52 V vs. SCE. Chemical or electrochemical reduction of [RuIII(pic)3] gives [RuII(pic)3], which in solution shows intense MLCT transitions near 360, 410 and 490 nm, and is converted back to [Ru(pic)3] by exposure to air. Reaction of [Ru(pic)3] with 8-quinolinol (HQ) in dimethylsulphoxide solution affords [RuQ3]. [Ru(bpy)(pic)2] (bpy = 2,2′-bipyridine) has been prepared by the reaction of Hpic with [Ru(bpy)(acac)2]Cl (acac = acetylacetonate ion) in ethyleneglycol. It is diamagnetic and in solution shows intense MLCT transitions near 370, 410 and 530 nm. In acetonitrile solution it shows a reversible ruthenium(II)-ruthernium(III) oxidation at 0.44 V vs. SCE and a reversible one-electron reduction of bpy at − 1.64V vs. SCE.  相似文献   

3.
A Schiff base (HL) has been synthesized and characterized by physico-chemical, spectroscopic and X-ray crystallography studies. Three of its Ru(III) complexes were synthesized and characterized by analytical and spectroscopic studies. The DNA binding properties of HL and its Ru(III) complexes have been investigated by electronic absorption spectroscopy. Also, HL and its Ru(III) complex [RuCl2(AsPh3)L] were tested for DNA cleavage properties. The results showed that the complex cleaves DNA more rapidly than the free ligand. Further, an in vitro study of the cytotoxicity of HL and the complex [RuCl2(AsPh3)L] was carried out.  相似文献   

4.
Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of barbital, thiouracil, adenine, amino acids (methionine, lysine and alanine) and some mixed ligands were prepared and characterized by elemental analyses, IR, electronic spectra, magnetic susceptibility and ESR spectra. Coordination of the metallic centre to the oxygen and nitrogen atoms of barbital, thiouracil, amino acids and coordinate to amino group and nitrogen atom of adenine occurred. Electronic spectra and magnetic susceptibility measurements were utilized to infer the structure of the complexes which are octahedral for Mn(II), Fe(III), Co(II), Ni(II) and Cd(II) and tetrahedral for Mn(II), Cu(II), Zn(II) complexes. ESR spectra were observed for copper complexes with a d(x2)-(y2) ground state with small g(||) values indicating strong interaction between the ligands and their metal ions.  相似文献   

5.
A series of binuclear bis-terpyridyl ruthenium complexes with different substituents were synthesized and characterized by physico-chemical and spectroscopic methods. The UV/Vis and fluorescence spectra indicated that the non-substituted binuclear bis(terpyridyl) ruthenium(II) complex has similar properties to those with electron-donating groups such as methyl and alkoxyl on the organic conjugated bridge units. Furthermore, similar oxidation–reduction potentials were observed according to their electrochemical properties in CH2Cl2 solution.  相似文献   

6.
The new water-soluble ruthenium(II) chiral complexes [RuCpX(L)(L')](n+) (X = Cl, I. L = PPh3; L' = PTA, mPTA; L = L' = PTA, mPTA) (PTA = 1,3,5-triaza-7-phosphaadamantane; mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane) have been synthesized and characterized by NMR and IR spectroscopy and elemental analysis. The salt mPTA(OSO2CF3) was also prepared and fully characterized by spectroscopic techniques. X-ray crystal structures of [RuClCp(PPh3)(PTA)] (2), [RuCpI(PPh3)(PTA)] (3), and [RuCpI(mPTA)(PPh3)](OSO2CF3) (9) have been determined. The binding properties toward DNA of the new hydrosoluble complexes have been studied using the mobility shift assay. The ruthenium chloride complexes interact with DNA depending on the hydrosoluble phosphine bonded to the metal, while the corresponding compounds with iodide, [RuCpI(PTA)2] (1), [RuCpI(PPh3)(PTA)] (3), [RuCpI(mPTA)2](OSO2CF3)2 (6), and [RuCpI(mPTA)(PPh3)](OSO2CF3) (9), do not bind to DNA.  相似文献   

7.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

8.
Three new Ru(II) complexes, [Ru(dmb)2(ipad)](ClO4)2 (dmb = 4,4′-dimethyl-2,2′-bipyridine, ipad = 2-(anthracene-9,10-dione-2-yl) imidazo[4,5-f][1,10]phenanthroline, 1), [Ru(dmp)2(ipad)](ClO4)2 (dmp = 2,9-dimethyl-1,10-phenanthroline, 2), and [Ru(dip)2(ipad)](ClO4)2 (dip = 4,7-diphenyl-1,10-phenanthroline, 3), have been synthesized and characterized. The three Ru(II) complexes intercalate with the base pairs of DNA. The in vitro antiproliferative activities and apoptosis-inducing characteristics of these complexes were investigated. The complexes exhibited cytotoxicity against various human cancer cell lines. BEL-7402 cells displayed the highest sensitivity to 1, accounted for by the greatest cellular uptake. Complex 1 was shown to accumulate preferentially in the nuclei of BEL-7402 cells and cause DNA damage and induce apoptosis, which involved cell cycle arrest and reactive oxygen species generation.  相似文献   

9.
A series of mixed-metal complexes coupling ruthenium light absorbers to platinum reactive metal sites through polyazine bridging ligands have been prepared of the form [(tpy)RuCl(BL)PtCl(2)](PF(6)) (BL = 2,3-bis(2-pyridyl)pyrazine (dpp), 2,3-bis(2-pyridyl)quinoxaline (dpq), 2,3-bis(2-pyridyl)benzoquinoxaline (dpb); tpy = 2,2':6',2' '-terpyridine). These systems possess electron-rich Ru metal centers bound to five polyazine nitrogens and one chloride ligand. This leads to complexes with low-energy Ru --> BL charge-transfer bands that are tunable with BL variation occurring at 544, 632, and 682 nm for dpp, dpq, and dpb, respectively. This tuning of the charge-transfer energy results from a stabilization of the BL(pi) orbitals in this series as evidenced by the cathodic shift in the first reduction of these complexes occurring at -0.50, -0.32, and -0.20 V vs Ag/AgCl, for dpp, dpq, and dpb, respectively. The chlorides bound to the Pt(II) center are substitutionally labile giving these complexes the ability to covalently bind to DNA. All three title bimetallics, [(tpy)RuCl(BL)PtCl(2)](PF(6)), avidly bind double-stranded DNA with t(1/2) = 1-2 min, substantially reducing the migration of DNA through an agarose gel. Details of the synthetic methods, FAB MS data, spectroscopic and electrochemical properties, and DNA binding studies are presented.  相似文献   

10.
Five metal complexes of the third-generation quinolone antibacterial agent moxifloxacin with Cu(II), Fe(III), Mn(II), Ni(II) and VO(II) have been synthesized and characterized by physicochemical and spectroscopic techniques. In these complexes, moxifloxacin acts as a bidentate deprotonated ligand bound to the metal through ketone and carboxylate oxygens. The interactions between the metal complexes and calf thymus DNA have been studied by UV?CVis, circular dichroism and cyclic voltammetry. Fluorescence competitive binding studies with ethidium bromide (EB) demonstrate the ability of the complexes to displace the EB bound to DNA. The cytotoxicities of the complexes have been evaluated on A549 cells by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) method. [Cu(MFL)2(H2O)2] shows the highest anticancer potency. The apoptosis-inducing activity was assessed by acridine orange/ethidium bromide staining assay.  相似文献   

11.
We report the synthesis, nucleic acid binding and cytotoxicity of the complexes [Ru(terpy)(Me2bpy)Cl]+, [Ru(terpy)(phen)Cl]+ and dinuclear [{Ru(terpy)Cl}2(??-bbn)]2+ {where Me2bpy = 4,4??-dimethyl-2,2??-bipyridine; phen = 1,10-phenanthroline; and bbn = bis[4(4??-methyl-2,2??-bipyridyl)]-1,n-alkane, with n = 7, 10, 12, 14}. The complexes were isolated from the reaction of the [Ru(terpy)Cl3] precursor with the respective bidentate and di-bidentate bridging ligands. The time-course UV?CVisible spectroscopy of the reaction of the mono- and dinuclear complexes with guanosine 5-monophosphate (GMP) showed the movement of the metal-to-ligand charge transfer (MLCT) band to lower wavelengths, accompanied by a hypochromism effect. The formation of the aqua complex and phosphate-bound intermediates in the reaction were detected by the time-course 1H NMR and 31P NMR experiments, which also demonstrated that the complex bound to the N7 guanine was the major product. The UV?CVisible and 1H NMR studies showed no evidence of the interaction of the complexes with both adenosine 5-monophosphate (AMP) and cytidine 5-monophosphate (CMP). Cytotoxicity studies of these complexes against a murine leukemia L1210 cell line revealed that the dinuclear [{Ru(terpy)Cl}2(??-bbn)]2+ complexes were significantly more cytotoxic than mononuclear [Ru(terpy)(Me2bpy)Cl]+. The [{Ru(terpy)Cl}2(??-bb14)]2+ complex appeared to be the most active (IC50 = 4.2 ??M).  相似文献   

12.
The cyclopentadienyl ruthenium complexes CpRuL2SCO-het (Cp = η5-C5H5; L2 = 2PPh3 (1), dppe (2)) bearing heterocyclic thiocarboxylate ligands have been synthesized from the reaction of CpRuL2SH with heterocyclic acid chlorides (ClCO-2-C4H3S (a); ClCO-2-C4H3O (b); ClCO-1-C4H8N (c)). Bubbling of CO gas through a THF solution of (1) produced the mixed carbonyl–phosphine complexes CpRu(PPh3)(CO)SCO-het (3) with high yields. Complexes (1)-(3) were characterized by spectroscopic methods (i.r., 1H-n.m.r., 31P-n.m.r.) and elemental analysis. The molecular structure of CpRu(PPh3)2SCO-2-C4H3S (1a) verifies that the thiocarboxylate ligands bind via the sulfur atom (Ru–S = 2.406(2) Å).  相似文献   

13.
The synthesis, spectral characterization, and biological studies of ruthenium(II) hydrazone complexes [RuCl(CO)(PPh3)2L] (where L = hydrazone ligands) have been carried out. The hydrazones are monobasic bidentate ligands with O and N as the donors and are preferably found in the enol form in all the complexes. The molecular structure of the ligands HL1, HL2, and HL3 were determined by single-crystal X-ray diffraction. The DNA binding studies of the ligands and complexes were carried out by absorption spectroscopic and viscosity measurements. The results revealed that the ligands and complexes bind to DNA via intercalation. The DNA cleavage activity of the complexes, evaluated by gel electrophoresis assay, revealed that the complexes are good DNA cleaving agents. The antioxidant properties of the complexes were evaluated against DPPH, OH, and NO radicals, which showed that the complexes have strong radical-scavenging. Further, the in vitro cytotoxic effect of the complexes examined on HeLa and MCF-7 cancer cell lines showed that the complexes exhibited significant anticancer activity.  相似文献   

14.
This article describes the preparation and characterization of cis-[Ru(bipy)2L](ClO4)2 and trans-[RuCl2L2]?·?Cl (bipy?=?2,2′-bipyridyl and L?=?ortho-phenylenediamine (o-phd), 2-aminopyridine (2-apy) and 2-aminobenzonitrile (2-abn), and examines the catalytic oxidations of benzyl alcohol, benzohydrol and pipronyl alcohol by cis-[Ru(bipy)2 (o-phd)](ClO4)2 and trans-[RuCl2(o-phd)2]?·?Cl complexes at room temperature and in the presence of N-methyl morpholine-N-oxide (NMO) as co-oxidant.  相似文献   

15.
Reactions of the ruthenium complexes [RuH(CO)Cl(PPh3)3] and [RuCl2(PPh3)3] with hetero-difunctional S,N-donor ligands 2-mercapto-5-methyl-1,3,5-thiadiazole (HL1), 2-mercapto-4-methyl-5-thiazoleacetic acid (HL2), and 2-mercaptobenzothiazole (HL3) have been investigated. Neutral complexes [RuCl(CO)(PPh3)2(HL1)] (1), [RuCl(CO)(PPh3)2(HL2)] (2), [RuCl(CO)(PPh3)2(HL3)] (3), [Ru(PPh3)2(HL1)2] (4), [RuCl(PPh3)3(HL2)] (5), and [RuCl(PPh3)3(HL3)] (6) imparting κ2-S,N-bonded ligands have been isolated from these reactions. Complexes 1 and 4 reacted with diphenyl-2-pyridylphosphine (PPh2Py) to give neutral κ1-P bonded complexes [RuCl(CO)(κ1-P-PPh2Py)2(HL1)] (7), and [Ru(κ1-P-PPh2Py)2(HL1)2] (8). Complexes 1-8 have been characterized by analytical, spectral (IR, NMR, and electronic absorption) and electrochemical studies. Molecular structures of 1, 2, 4, and 7 have been determined crystallographically. Crystal structure determination revealed coordination of the mercapto-thiadiazole ligands (HL1-HL3) to ruthenium as κ2-N,S-thiolates and presence of rare intermolecular S-S weak bonding interaction in complex 1.  相似文献   

16.
Dimers of the pyrrole amino acid (Paa), 5-(aminomethyl)pyrrole-2-carboxylic acid, and its derivatives having Lys anchored on N- and C-termini bind in the minor groove of DNA with considerable apparent binding affinities. When the Lys unit is attached to the C-terminus, the resulting ligand binds to ds-DNA with twice the affinity, of the order of 105, than the one carrying two positive charges at the same end.  相似文献   

17.
The preparation of eight metallophthalocyanine complexes substituted by N-piperidineethanol was achieved by tetramerization of 3-[2-(piperidin-1-yl)ethoxyl] phthalonitrile and 4-[2-(piperidin-1-yl)ethoxyl]phthalonitrile in the presence of a metal salt with n-pentanol as solvent and DBU as catalyst, respectively. These complexes were characterized by IR, elemental analysis, 1H NMR and mass spectra. Some properties such as UV/visible absorption spectra, rate of singlet oxygen yields, fluorescence spectra and quantum yields were examined and discussed.  相似文献   

18.
A series of new mixed ligand penta-coordinated square pyramidal ruthenium(II) complexes containing benzaldehyde or its substituents and triphenylphosphine or triphenylarsine have been synthesized and characterized. In the electronic spectra, three well-defined peaks in the visible region were observed and assigned to d-d transitions in D(4h) and low spin axially distortion from O(h) symmetry. The spectrochemical parameters of the complexes were calculated and placed the ligands in the middle of the spectrochemical series. The redox properties and stability of the complexes toward oxidation were related to the electron-withdrawing or releasing ability of the substituent in the phenyl ring of the benzaldehyde. The electron-withdrawing substituents stabilized Ru(2+) complexes, while electron-donating groups favored oxidation to Ru(3+). The mechanism and kinetics of the catalytic oxidation of benzyl alcohol by the complex [RuCl(2)(Pph(3))(C(6)H(5)CHO)(2)] in the presence of N-methylmorpholine-N-oxide have also been studied.  相似文献   

19.
Abstract

Dinuclear ruthenium complexes [Ru2(bpy)4BL](ClO4)2 (Ru-1), where bpy = 2,2′-bipyridine and BL = 2,2′-((1E,1′E)-((E)-diazene-1,2-diyl-bis(2,1-phenylene))-bis(azanylylidene))bis(methanylylidene))diphenol (a bidentate bridging ligand), and mononuclear ruthenium complexes [Ru(bpy)2L](ClO4) (Ru-2), where L = (E)-2-((phenylimino)methyl)phenol, were synthesized and characterized by elemental analysis and electrospray ionization mass spectrometry. Their photophysical and electrochemical properties were also studied. The cytotoxicity of the two complexes in vitro was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results indicated that Ru-1 and Ru-2 exhibited significant dose-dependent cytotoxicity to human breast cancer (MCF-7), gastric cancer (SGC-7901), cervical cancer (Hela), and lung cancer (A549) tumor cell lines. Ru-1 showed excellent antitumor effects in a cellular study (IC50 values of 3.61 μM for MCF-7 human breast cancer cells in vitro). However, Ru-2 exhibited the highest cytotoxicity to Hela cells; the IC50 value is 3.71 μM. The results reveal that Ru-1 and Ru-2 have obvious selectivity and might be a potential anticancer agent that could improve the efficacy of common anticancer therapies.  相似文献   

20.
Two mixed ligand complexes of ruthenium(ii) [Ru(bzimpy)(bpy)(OH(2))](2+) (1) and [Ru(bzimpy)(phen)(OH(2))](2+) (2) have been synthesized and characterized by FAB mass, (1)H NMR, cyclic voltammetry and spectroelectrochemical measurements. Controlled potential electrolysis of these complexes results in the conversion of ruthenium(ii) to ruthenium(iii) at 0.6 V and ruthenium(iii) to ruthenium(iv) at 0.8 V vs. SCE. The binding constant of these complexes with DNA has been determined electrochemically and found to be (3.58 +/- 0.25) x 10(4) and (2.87+/- 0.2) x 10(4) M(-1). Viscosity measurements suggest that these complexes bind with DNA through intercalation. Such intercalative binding to DNA has been found to induce chirality to the two complexes. Electrochemically generated ruthenium(iv) species of these complexes have been found to bring about oxidative cleavage in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号