首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach is presented for interpreting and potentially predicting values of the isothermal, isobaric transfer free energy, entropy, and enthalpy (Deltamicrotr2, Deltastr2, and Deltahtr2) for a solute between water and water-cosolvent mixtures. The approach explicitly accounts for volumetric properties of the solvent and solute (the equation of state, EoS) and casts the overall transfer process as a thermodynamic cycle with two stages: (1) isothermal solvent exchange from pure water to the cosolvent composition of interest at fixed mass density; (2) isothermal expansion or compression at the final solvent composition to recover the pressure of the initial state. Using molecular simulations with methane as the solute, the analysis is illustrated over a wide range of cosolvent concentrations for sorbitol-, ethanol-, and methanol-water binary mixtures. The EoS contribution semiquantitatively or quantitatively captures Deltamicrotr2, Deltastr2, and Deltahtr2 in almost all cases tested, highlighting the importance of considering the effects of changes in solvent density on the overall transfer process. The results also indicate that apolar solvation at these length scales is dominated by the work of cavity formation across a range of cosolvent species and concentrations.  相似文献   

2.
3.
This study provides the first accurate analysis of the energetics of solvation of blood porphyrins in binary solvents which are considered as appropriate models for a smooth transition from a polar protein-like phase to an apolar lipid-like environment. Our results do indicate that hematoporphyrin dimethylether dimethylester (HDEDE) and deuteroporphyrin dimethylether (DDE), as well as the model of their ester side-chains ethyl acetate (EtOAc), reveal more exothermic solvation in chloroform (CHCl3) than in dimethylformamide (DMF) and, especially, in 1-octanol (OctOH). The energetics of pair interaction between dissolved species and cosolvent molecules both in a protein-like and a lipid-like environment are clearly associated with these solvation effects. The interaction between blood porphyrins and DMF in OctOH is accompanied by large negative enthalpy changes at both temperatures, whereas in chloroform, forming strong H-bonds with dissolved species, the interaction is strongly thermochemically repulsive. All solute molecules interact in the energetically unfavorable way with OctOH and CHCl3 in DMF, the effect being much stronger pronounced for chloroform. The most significant result of this work is that it is possible to connect this pair interaction in a highly diluted solution with the solute behavior in the entire range of the binary mixture. The approach proposed is independent of a solute and solvent structure, it provides a good prediction of the energetics of solvation in mixed solvents and can be extended for a lot of other biologically active solutes.  相似文献   

4.
The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale (E(T)) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.  相似文献   

5.
The retention behavior and mechanism of methyl, ethyl, propyl, isopropyl, buthyl and isobuthyl benzoates have been studied at different eluent compositions of aqueous mixtures with water-soluble organic solvents (methanol, ethanol, 1-propanol, 2-propanol, acetonitrile (AN), 1,4-dioxane and tetrahydrofuran (THF)) in RPLC. The retention of the solutes is discussed based on the solvent composition, solvent polarity (ETN value), preferential solvation, hydrogen bonding and solvent clusters of the eluents. The smaller ETN values and the larger preferential solvation of the mixed solvent eluted the solutes faster. The IR spectra of HDO suggested that the solvents, except for methanol and ethanol, break the hydrogen bonding between water molecules, resulting in fast elution of the solutes. Based upon the results, we chose an optimum solvent composition for the separation of benzoates and applied it to the determination of the benzoates in clove.  相似文献   

6.
Solvation characteristics of a ketocyanine dye have been studied in completely miscible ternary solvent mixtures, namely, methanol + acetone + water and methanol + acetone + benzene, by monitoring the solvatochromic absorption band of the dye. The maximum energy of absorption (E) of the solute in a ternary solvent mixture differs significantly from the mole fraction average of the E values in the component solvents. Results in the corresponding binary solvent mixtures also show a deviation of the E value from the mole fraction averaged E values. The results have been explained in terms of preferential solvation using a two phase model of solvation. The excess or deficit over the bulk composition of a solvent component in the vicinity of the solute molecule in a ternary solvent mixture has been estimated using the knowledge of solvation in the corresponding binary mixtures.  相似文献   

7.
The excitation energy of Brooker's merocyanine in water–methanol mixtures shows nonlinear behavior with respect to the mole fraction of methanol, and it was suggested that this behavior is related to preferential solvation by methanol. We investigated the origin of this behavior and its relation to preferential solvation using the three‐dimensional reference interaction site model self‐consistent field method and time‐dependent density functional theory. The calculated excitation energies were in good agreement with the experimental behavior. Analysis of the coordination numbers revealed preferential solvation by methanol. The free energy component analysis implied that solvent reorganization and solvation entropy drive the preferential solvation by methanol, while the direct solute–solvent interaction promotes solvation by water. The difference in the preferential solvation effect on the ground and excited states causes the nonlinear excitation energy shift. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
The solvatochromic properties of the free base and the protonated 5,10,15,20-tetrakis(4-trimethyl-ammonio-phenyl)-porphine tetratosylate (TTMAPP) were studied in pure water, methanol, ethanol, 2-propanol, and their corresponding aqueous mixtures. The correlation of the empirical solvent polarity scale (E T) values of TTMAPP with composition of the solvents were analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition effects in preferential solvation of the solute dyes were investigated in terms of both solvent–solvent and solute–solvent interactions and also the local mole fraction of each solvent composition was calculated in the cybotactic region of the probe. The effective mole fraction variation may provide significant physicochemical insights in the microscopic and molecular level of interactions between TTMAPP species and the solvent components and, therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TTMAPP.  相似文献   

9.
Folded protein stabilization or destabilization induced by cosolvent in mixed aqueous solutions has been studied by differential scanning microcalorimetry and related to difference in preferential solvation of native and denatured states. In particular, the thermal denaturation of a model system formed by lysozyme dissolved in water in the presence of the stabilizing cosolvent glycerol has been considered. Transition temperatures and enthalpies, heat capacity, and standard free energy changes have been determined when applying a two-state denaturation model to microcalorimetric data. Thermodynamic parameters show an unexpected, not linear, trend as a function of solvent composition; in particular, the lysozyme thermodynamic stability shows a maximum centered at water molar fraction of about 0.6. Using a thermodynamic hydration model based on the exchange equilibrium between glycerol and water molecules from the protein solvation layer to the bulk, the contribution of protein-solvent interactions to the unfolding free energy and the changes of this contribution with solvent composition have been derived. The preferential solvation data indicate that lysozyme unfolding involves an increase in the solvation surface, with a small reduction of the protein-preferential hydration. Moreover, the derived changes in the excess solvation numbers at denaturation show that only few solvent molecules are responsible for the variation of lysozyme stability in relation to the solvent composition.  相似文献   

10.
We have carried out a series of molecular-dynamics simulations of water-methanol mixtures containing either an ionic or a neutral atomic solute to investigate the effects of composition of the mixture on the diffusion of these solutes. Altogether, we have considered 17 different systems of varying composition ranging from pure water to pure methanol. The diffusion coefficients of ionic solutes are found to show nonideal behavior with variation of composition of the solvent mixture. The extent of nonideality of the solute diffusion is found to be similar to the nonideality that is observed for the diffusion and orientational relaxation of water and methanol molecules in these mixtures and is attributed to the enhanced stability of the hydrogen bonds and formation of interspecies complexes in the mixtures. The neutral solute shows characteristics of hydrophobic solvation and its diffusion decreases monotonically with increase of methanol concentration. The present simulation results are compared with those of experiments wherever available.  相似文献   

11.
Electronic absorption and emission spectra of 10-bis(phenylethynyl)anthracene (PEA) and coumarin 153 (C153) are measured as functions of composition along the bubble-point curve at 25 degrees C in CO2-expanded cyclohexane (c-C6H12), acetonitrile (CH3CN), and methanol (CH3OH). The nonlinear dependence of the spectral frequencies on composition suggests substantial preferential solvation of both solutes by the liquid components of these mixtures. Estimates of enrichment factors (local mole fraction of a component divided by its bulk value) based on the assumption that spectral shifts are linearly related to local composition are quite large (approximately 10) in the cases of the C153/CH3CN + CO2 and C153/CH3OH + CO2 systems at high xCO2. Computer simulations of anthracene, the chromophore of PEA, and C153 in these three CO2-expanded liquids are used to clarify the relationship between local composition and spectral shift. A semiempirical model consisting of additive electrostatic and dispersive interactions is able to capture the main features observed experimentally in all six solute/solvent combinations. The simulations show that the commonly used assumption of a linear relation between spectral shifts and local compositions grossly exaggerates the extent of preferential solvation in these mixtures. The collective nature of electrostatic solvation and the composition dependence of the solute's coordination number are shown to be responsible for the breakdown of this assumption.  相似文献   

12.
密度法测定了298.15 K下乙醇、环己烷、三氯甲烷、甲苯、丙酮、四氯化碳、乙腈、二甲基甲酰胺、二甲基亚砜在甲醇或苯及两者混合物中的无限稀释偏摩尔体积. 密度测定所用溶液中溶质的浓度范围是0.2一1.5 m; 甲醇和苯混合物是全组成比范围. 溶质偏摩尔体积随甲醇-苯组成比的变化趋势反映了几种分子间相互作用结果即三种分子间物理型分子间相互作用; 溶质与甲醇分子氢键缔合相互作用; 溶质同甲醇或苯的弱络合作用。  相似文献   

13.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

14.
Monte Carlo computer simulations are used to study transient cavities and the solvation of hard-spheroid solutes in dipolar hard-sphere solvents. The probability distribution of spheroidal cavities in the solvent is shown to be well described by a Gaussian function, and the variations of fit parameters with cavity elongation and solvent properties are analyzed. The excess chemical potentials of hard-spheroid solutes with aspect ratios x in the range of 15< or =x< or =5, and with volumes between 1 and 20 times that of a solvent molecule, are presented. It is shown that for a given molecular volume and solvent dipole moment (or temperature) a spherical solute has the lowest excess chemical potential and hence the highest solubility, while a prolate solute with aspect ratio x should be more soluble than an oblate solute with aspect ratio 1x. For a given solute molecule, the excess chemical potential increases with increasing temperature; this same trend can be observed in hydrophobic solvation. A scaled-particle theory based on the solvent equation of state and a fitted solute-solvent interfacial tension shows excellent agreement with the simulation results over the whole range of solute elongations and volumes considered. An information-theoretic model based on the solvent density and radial distribution function is less successful, being accurate only for small solute volumes and low solvent densities.  相似文献   

15.
The enthalpies of transfer of formamide (Form) N-methylformamide (NMF) and N,N-dimethylformamide (DMF) from water to aqueous methanol mixtures are reported and analysed in terms of the new solvation theory. It was found that a previous equation could not reproduce these data over the whole range of solvent compositions. Using the new solvation theory to reproduce the enthalpies of transfer shows excellent agreement between the experimental and calculated data over the entire range of solvent compositions. The analyses show that the solvation of DMF is random in the aqueous methanol mixtures while Form and NMF are preferentially solvated by methanol. It is also found that the interaction of the solutes is stronger with methanol than with water.  相似文献   

16.
Preferential solvation parameters of etoricoxib in several aqueous cosolvent mixtures were calculated from solubilities and other thermodynamic properties by using the IKBI method. Cosolvents studied were as follows: 1,4-dioxane, N,N-dimethylacetamide, 1,4-butanediol, N,N-dimethylformamide, ethanol and dimethyl sulfoxide. Etoricoxib exhibits solvation effects, being the preferential solvation parameter δx1,3, negative in water-rich and cosolvent-rich mixtures but positive in mixtures with similar proportions of both solvents. It is conjecturable that the hydrophobic hydration in water-rich mixtures plays a relevant role in drug solvation. In mixtures of similar solvent proportions where etoricoxib is preferentially solvated by the cosolvents, the drug could be acting as Lewis acid with the more basic cosolvents. Finally, in cosolvent-rich mixtures the preferential solvation by water could be due to the more acidic behaviour of water. Nevertheless, the specific solute–solvent interactions in the different binary systems remain unclear because no relation between preferential solvation magnitude and cosolvent polarities has been observed.  相似文献   

17.
Enthalpies of solution of -D-fructose and sucrose in binary solvent mixtures of water and N,N-dimethylformamide (DMF) at 25°C over the whole mole fraction region are reported and compared to those of -D-glucose. Because in these solvent systems the mutarotation of -D-fructose is fast and accompanied by large enthalpy changes, the measured enthalpies of solution of this compound had to be corrected for this effect. The dependences of the enthalpies of solution on the composition of the solvent mixtures are considered to result from preferential hydrogen-bonding of the hydroxyl groups and hydrophobic hydration of the apolar parts of the surface of the solute molecule. Distinctions between the enthalpy of transfer curves are discussed in terms of conformational differences and additivity aspects in the solvation behavior of the compounds. The predominance of furanose forms of fructose in DMF and that of pyranose forms of the same solute in water are related to differences in solvation.  相似文献   

18.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxanebonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50 % (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing π- and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30 % (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1 % (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

19.
The charge transfer (CT) band maximum of N-alkyl pyridinium iodide (NAPI) has been studied as a function of the composition of binary mixed dipolar aprotic solvents. The deviation from linearity of the energy maximum (E12) and the mole fraction (of a component solvent) plot is explained as due to a preferential solvation by the more polar cosolvent in the binary mixture. The extent of preferential solvation has been observed to vary with the composition, the maximum being towards the less-polar end. The role of hydrogen bond donating ability of a solvent in preferential solvation is discussed.  相似文献   

20.
Hydrophobic hydration, the perturbation of the aqueous solvent near an apolar solute or interface, is a fundamental ingredient in many chemical and biological processes. Both bulk water and aqueous solutions of apolar solutes behave anomalously at low temperatures for reasons that are not fully understood. Here, we use (2)H NMR relaxation to characterize the rotational dynamics in hydrophobic hydration shells over a wide temperature range, extending down to 243 K. We examine four partly hydrophobic solutes: the peptides N-acetyl-glycine-N'-methylamide and N-acetyl-leucine-N'-methylamide, and the osmolytes trimethylamine N-oxide and tetramethylurea. For all four solutes, we find that water rotates with lower activation energy in the hydration shell than in bulk water below 255 +/- 2 K. At still lower temperatures, water rotation is predicted to be faster in the shell than in bulk. We rationalize this behavior in terms of the geometric constraints imposed by the solute. These findings reverse the classical "iceberg" view of hydrophobic hydration by indicating that hydrophobic hydration water is less ice-like than bulk water. Our results also challenge the "structural temperature" concept. The two investigated osmolytes have opposite effects on protein stability but have virtually the same effect on water dynamics, suggesting that they do not act indirectly via solvent perturbations. The NMR-derived picture of hydrophobic hydration dynamics differs substantially from views emerging from recent quasielastic neutron scattering and pump-probe infrared spectroscopy studies of the same solutes. We discuss the possible reasons for these discrepancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号