首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of polycrystalline platinum in perchloric acid is studied by cyclic voltammetry at a potential scan rate of 0.1 V s–1 in various potential cycling ranges. The earlier model for the formation of a barrier layer of strong complexes consisting of subsurface oxygen Oss, platinum atoms, and anions adsorbed on the latter is shown to correctly describe experimental results on the platinum oxidation in sulfuric and perchloric acids. The regularities in these acids are on the whole similar. A weaker adsorption of perchlorate anions as compared with bisulfate facilitates chemisorption of oxygen at 0.7–0.85 V and hinders exchange by sites Pt O at 0.85–1.35 V. A prolonged potential cycling with a cathodic limit of 0.27 V and low anodic limits leads to the accumulation of surface complexes Oss–Pt n –ClO4, which hinder both the oxygen chemisorption and the exchange Pt O below 1 V. At more positive potentials, the complexes are destroyed and oxygen penetrates into subsurface platinum layers.  相似文献   

2.
The formation of an adatom layer on polycrystalline platinum and the three-dimensional nucleation of copper in a copper perchlorate solution are studied by cyclic voltammetry at 0.1 V s–1 while varying potential ranges and by recording potentiostatic current transients. About 0.6 monolayers of copper adatoms are deposited when cycling with anodic limit E a = 1.35 V, the process is slower than that in an acid sulfate solution. Decreasing E a accelerates the process (nearly one monolayer forms for E a = 0.80–0.95 V in a cathodic scan) due to an increased number of active centers (metastable copper oxides) and, probably, to a change in the platinum surface microstructure. Oxygen for copper oxides is presumably supplied by water molecules adsorbed on a monolayer of copper adsorbed atoms and by subsurface oxygen (Oss), which appears on the platinum surface after the destruction of complexes Oss–Pt n –ClO4. Both the copper nucleation and the deposit growth accelerate at higher concentrations of copper oxides, which form at low E a. High cathodic overvoltages decrease the number of active crystallization centers due to reduction or removal of copper oxides.  相似文献   

3.
The formation of a copper adatom layer on polycrystalline platinum in a copper sulfate solution is studied by cyclic voltammetry in different cycling ranges at 0.1 V s–1. The copper adatom deposition kinetics is controlled by the following factors. The substrate's top layer structure during the oxygen exit onto the surface may be unstable at anodic limits E a = 0.90–1.35 V. The concentration of copper oxides (active centers) may be higher at E a = 0.8–0.95 V. The balance between different adsorption sites differs in different cycling conditions. Of importance is the number of complexes Oss–Pt n –SO4 and Oss–Pt n –Oc, where Oss is subsurface oxygen and Oc is chemisorbed oxygen.  相似文献   

4.
Pt–CeO2/C, Pt–TiO2/C, and Pt–ZrO2/C electrocatalysts were prepared by using a modified microwave‐assisted polyol process. Physical characterization was performed by using XRD, TEM, and EDX analyses. The incorporation of different metal oxides increased the dispersion degree of Pt nanoparticles and reduced their diameter to 2.50 and 2.33 nm when TiO2 and ZrO2 were introduced to Pt/C, respectively. The electrocatalytic activity of various electrocatalysts was examined towards methanol oxidation in H2SO4 solution by using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Among the studied composites, Pt–ZrO2/C was selected to be a candidate electrocatalyst for better electrochemical performance in direct methanol fuel cells.  相似文献   

5.
A ruthenium-sulfur carbonyl cluster electrocatalyst, Ru x S y (CO) n , was synthesized by pyrolysis of Ru3(CO)12 and elemental sulfur in a sealed ampoule at 300 °C. The pyrolyzed compound was characterized by DSC, FT-IR, XRD and SEM (EDX) techniques. The electrocatalytic activity and kinetic parameters for the molecular oxygen reduction were determined by a rotating ring-disk electrode (RRDE) in a 0.5 M H2SO4 solution at 25 °C. The cathodic polarization indicates two Tafel slopes: −0.124 ± 0.002 V dec−1 at low and −0.254 ± 0.003 V dec−1 at high overpotentials, and first-order kinetics with respect to O2 concentration. From the analysis of Levich plots and RRDE results, the oxygen reduction on Ru x S y (CO) n was determined to proceed mostly via a multielectron transfer path (4e) to water formation ( >94%). Received: 4 March 1999 / Accepted: 26 May 1999  相似文献   

6.
制备方法对H2SO4固体酸结构和催化性能的影响   总被引:6,自引:0,他引:6  
 以溶胶-凝胶法和浸渍法制备了H2SO4固体酸催化剂. FT-IR, XRD和 29Si MAS NMR结果表明,两种方法得到的催化剂结构不同. FT-IR和 29Si MAS NMR结果表明,溶胶-凝胶法制备的固体酸H2SO4-SiO2中H2SO4和载体SiO2间存在相互作用; 1H MAS NMR结果表明,H2SO4-SiO2固体酸的酸强度和液体浓硫酸相当. 通过对柠檬酸与正丁醇的液/固相催化酯化反应比较了溶胶-凝胶法与浸渍法制备的固体酸的催化性能,结果表明,浸渍法得到的固体酸重复使用4次后活性消失; 溶胶-凝胶法制备的H2SO4-SiO2固体酸重复使用6次后仍显示出较高的活性和选择性.  相似文献   

7.
Abstract

A convenient, rapid H2SO4-promoted regioselective monobromination reaction with N-bromosuccinimide was developed. The desired para-monobrominated or ortho-monobrominated products of phenol derivatives were obtained in good to excellent yields with high selectivity. Regioselective chlorination and iodination were also achieved in the presence of H2SO4 using N-chlorosuccinimide and N-iodosuccinimide, respectively.  相似文献   

8.
炭载体的稳定性对于燃料电池电催化剂是至关重要的. 本文中采用酚醛树脂作为前驱体,二氧化硅为模板剂,制备了多介孔且石墨化程度高的炭载体(HGMC). 相比于商品Vulcan XC-72,HGMC具有中等的比表面积和高的石墨化程度,因此在电位循环扫描过程中具有较高的化学稳定性,然而HGMC碳层堆叠的结构不利于传质. 为克服这一劣势,多壁碳纳米管(MWCNTs)作为隔离物加入至HGMC中以构建具有三维多尺度结构的载体(MSGC). 与HGMC为载体担载Pt以及商品催化剂Pt/C-JM相比,由于炭载体的具有高稳定性以及三维多尺度结构,MSGC担载Pt后不仅使电催化剂的电化学稳定性提高,且氧还原反应过程中传质得到显著改善.  相似文献   

9.
成功研发了一种与已报道的方法相比合成蒽醌衍生物产量更高的新方法,该方法具有原料易得,收率高,反应时间短,反应条件温和以及操作容易等特点. 合成的蒽醌衍生物的结构由物性数据和光谱结果确定.  相似文献   

10.
In a recent study investigating the suitability of solvent extraction (SX) for the separation of Ta and Nb, it was shown that speciation data would be required to help explain the data obtained. As traditional speciation techniques cannot be readily applied for Ta and Nb, it was decided to determine the suitability of molecular modeling for this purpose. During the SX experiments the aqueous phase consisted of sulfuric acid (H2SO4), water, and metal species. In this study density functional theory (DFT) modeling was used to calculate the formation energy of five possible reactions of H2SO4 and H2O. Different functional and basis set combinations were compared as well as the effect of infinite dilution by using the conductor-like screening model (COSMO), which simulates infinite dilution of solvents of varying polarity and includes the short-range interactions of the solute particles. The results obtained were used to determine whether it is possible to predict the reactions and mechanism when H2SO4 and H2O interact during SX. According to the results, the deprotonation of H2SO4 was endothermic in a 1:1 acid–water ratio, while being both exothermic in the 1:5 and 1:10 acid–water ratio forming HSO4 and SO42− respectively. Furthermore, it was seen that the hydration and dehydration of H2SO4 in a bulk H2O solution was a continuous process. From the energy calculations it was determined that although the H2SO4●H2O, HSO4●H2O, and H2SO4●2H2O species could form, they would most likely react with H2O molecules to form HSO4, H3O+, and H2O. © 2018 Wiley Periodicals, Inc.  相似文献   

11.
Transients of the open-circuit potential, which are observed during the interaction of formic acid with preliminarily adsorbed oxygen (Oads) on a Pt/Pt electrode in 0.5 M H2SO4, are measured. It is established, by means of the method of cathodic potentiodynamic pulses, that the slowest interaction of formic acid with Oads occurs in the region of large coverages of the electrode surface by oxygen (θO ∼1–0.8). A presumption is put forward that the process rate in this region is defined by a direct reaction of Oads with molecules of formic acid from the bulk solution. It is shown that the interaction of formic acid with Oads in the region of intermediate coverages (θO ∼ 0.8–0.2) proceeds via a mechanism of “conjugated reactions.” Transients of the open-circuit potential for formic acid are compared to transients for carbon monoxide obtained in analogous conditions. The substantially shorter overall time of potential decay in the case of CO (at the same concentrations) is caused by a faster reaction of CO with adsorbed oxygen in the region of large θO. The difference is explained by assuming that the HCOOH adsorption as opposed to CO bears a dissociative character.__________Translated from Elektrokhimiya, Vol. 41, No. 8, 2005, pp. 936–942.Original Russian Text Copyright © 2005 by Manzhos, Maksimov, Podlovchenko.  相似文献   

12.
Borosulfates are an ever‐expanding class of compounds and the extent of their properties is still elusive. Herein, the first two copper borosulfates Cu[B2(SO4)4] and Cu[B(SO4)2(HSO4)] are presented, which are structurally related but show different dimensionalities in their substructure: While Cu[B2(SO4)4] reveals an anionic chain, [B(SO4)4/2]?, with both a twisted and a unique chair conformation of the B(SO4)2B subunits, Cu[B(SO4)2(HSO4)] reveals isolated [B2(SO4)4(HSO4)2]4? anions showing exclusively a twisted conformation. The complex anion can figuratively be obtained as a cut‐out from the anionic chain by protons. Comparative DFT calculations based on magnetochemical measurements complement the experimental studies. Calculation of the pKa values of the two conformers of the [B2(SO4)4(HSO4)2]4? anion revealed them to be more similar to silicic than to sulfuric acid, highlighting the close relationship to silicates.  相似文献   

13.
A study on the use of the methanol extract of Medicago sativa as a green corrosion inhibitor for 1018 carbon steel in 0.5?M of sulfuric acid has been carried out by using potentiodynamic polarization curves, electrochemical impedance spectroscopy and gravimetric tests. Testing temperatures were 25°C, 40°C and 60°C. Results showed that M. sativa is a good corrosion inhibitor, with its efficiency increasing with its concentration and with time, but decreasing with the temperature. M. sativa forms a passive film on top of the steel with a passive current density and pitting potential values lower than that for uninhibited solution, and remained on the steel for 8–12?h. This film formed by iron ions and heteroatoms present in OH? and amine groups from the extract are adsorbed on the steel and form a protective film on to the steel.  相似文献   

14.
电极液酸度及稀土浓度对硫酸体系电解还原提纯镱的影响   总被引:1,自引:1,他引:1  
研究了在硫酸体系中,采用钌铱钛合金网为阳极,金属汞为阴极,在无惰性气氛的保护下,尝试电解还原镱,在诸多电极条件实验中着重研究了阳极液酸度、阴极液酸度以及料液浓度变化时电流、目标离子的还原率等电解还原过程的变化。研究表明,当阳极液酸度为2.0 mol.L-1,阴极液pH=0.3,阴极液稀土料液浓度为0.5 mol.L-1时,镱的还原率可达95%以上,硫酸镱纯度达到99%以上,稀土总回收率高于99%。  相似文献   

15.
研究了H2SO4对壳聚糖(CS)膜醇水分离性能的影响.结果表明,H2SO4使CS上的—NH2质子化为—NH+3,降低了极性较差的乙醇分子进入膜内的能力,提高了膜对水分子的吸附选择性.又因为SO2-4可以与2个—NH+3作用,使部分CS链产生交联,缩小了分子透过的通道.由于乙醇分子比水分子大,故大大提高了膜对水的渗透选择性.所以,H2SO4能提高CS膜的醇水分离性能是以上两种因素综合作用的结果.  相似文献   

16.
The preparation and electrochemistry of dispersed Pt metal on nanoporous titanium dioxide coatings is described. It is shown that photocatalytic deposition of Pt centres on a nanoporous titanium dioxide layer fabricated from TiO2 nanoparticles leads to high surface area electrocatalysts. The reactions investigated are the evolution of hydrogen and the oxidation of carbon monoxide and methanol.  相似文献   

17.
The indicator method was employed to measure the acidity function H 0 S of H2SO4 solutions in solvents consisting of an equimolar mixture of phenol and acetone with 0.8% water (from 3.6·10–4 to 2.6·10–2 M H2SO4) and 2.5% water (from 4.3·10–4 to 0.32 M H2SO4) and of phenol and acetone in a molar ratio of 1:1.5 with 0.67% water (from 1.63·10–4 to 7.77·10–2 M H2SO4) and 2.09% water (from 4.49·10–4 to 0.35 M H2SO4) at 25°C. The indicators employed were 4- and 2-nitroaniline.Deceased.N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow. Lenneftekhim Scientific-Commercial Association, St. Petersburg. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 72–78, January, 1992.  相似文献   

18.
电化学反应;直接甲醇燃料电池;燃料电池;二甲氧基甲烷在硫酸溶液中的电化学行为  相似文献   

19.
The sluggish kinetics of oxygen reduction to water remains a significant limitation in the viability of proton‐exchange‐membrane fuel cells, yet details of the four‐electron oxygen reduction reaction remain elusive. Herein, we apply in situ infrared spectroscopy to probe the surface chemistry of a commercial carbon‐supported Pt nanoparticle catalyst during oxygen reduction. The IR spectra show potential‐dependent appearance of adsorbed superoxide and hydroperoxide intermediates on Pt. This strongly supports an associative pathway for oxygen reduction. Analysis of the adsorbates alongside the catalytic current suggests that another pathway must also be in operation, consistent with a parallel dissociative pathway.  相似文献   

20.
Platinum is a catalyst of choice in scientific investigations and technological applications, which are both often carried out in the presence of oxygen. Thus, a fundamental understanding of platinum’s (electro)catalytic behavior requires a detailed knowledge of the structure and degree of oxidation of platinum surfaces in operando. ReaxFF reactive force field calculations of the surface energies for structures with up to one monolayer of oxygen on Pt(111) reveal four stable surface phases characterized by pure adsorbate, high‐ and low‐coverage buckled, and subsurface‐oxygen structures, respectively. These structures and temperature programmed desorption (TPD) spectra simulated from them compare favorably with and complement published scanning tunneling microscopy (STM) and TPD experiments. The surface buckling and subsurface oxygen observed here influence the surface oxidation process, and are expected to impact the (electro)catalytic properties of partially oxidized Pt(111) surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号