共查询到20条相似文献,搜索用时 46 毫秒
1.
纳米TiO_2对诸多环境污染物有显著的光催化降解作用,光催化已发展成为新型环境污染治理技术.本文采用阳极氧化法制备出TiO_2纳米管,对比了四种电解液组成(A氟化铵+硫酸铵+水;B氟化铵+硫酸铵+乙酸+水;C氟化铵+硫酸铵+甘油+水;D氢氟酸+二甲基亚砜(DMOS)+乙醇)对催化剂表面形貌及光催化性能的影响.结果表明,电解液A和C都制备出了形貌清晰的TiO_2纳米管,管径约为60~74 nm.样品经400℃煅烧,TiO_2晶型主要为锐钛矿相;经500℃煅烧,出现少量金红石相;经700℃煅烧,晶型全部为金红石相.具有良好形貌的TiO_2纳米管同时具有良好的紫外光吸收能力.当亚甲基蓝初始浓度为10mg·L~(-1),经500℃煅烧的TiO_2纳米管光催化活性最佳,光照30 min亚甲基蓝的降解率达89.98%.亚甲基蓝光催化降解反应符合一级反应动力学,反应速率常数为0.079 30. 相似文献
2.
Mesoporous,hollow Zn O microspheres were synthesized via a hydrothermal method,using glycerol and zinc acetate as the starting materials.XRD and FESEM analysis showed that the surface morphology of the spheres with a Wurtzite structure could be reasonably adjusted by varying the weight ratio(Rw) of Zn(CH3COO)2 2H2O:H2O:C3H8O3.The responses of the gas sensor based on the spheres to 100 ppm ethanol and 100 ppm acetone are 18.9 and 10.4,respectively.The response and recovery times of the sensor to ethanol and acetone are 2 s and 3 s,3 s and 5 s,respectively.The hollow spheres show an intense UV emission at 392 nm and a broad blue-green emission at 488 nm.Interestingly,a light trapping phenomenon is revealed by UV emission and scattering measurements on the microspheres,which can be attributed to the mesoporous shell and hollow structure of the microsphere. 相似文献
3.
PbTiO3 photocatalyst was synthesized successfully by facile hydrothermal method. The effects of the hydrothermal reaction temperatures and the pH values of the systems on the photocatalytic activities of PbTiO3 were investigated in detail. The photocatalytic activities of samples were evaluated by the degradation of methyl orange (MO) aqueous solution under simulated solar irradiation. The as-obtained PbTiO3 sample exhibits anisotropical growth along the (0 0 1) plane, and its photocatalytic activity is about 3 times higher than that of PbTiO3 prepared by precipitation method. Moreover, the as-prepared PbTiO3 has high stability during photocatalytic oxidation process, and does not cause secondary pollution. 相似文献
4.
利用Sol-gel法制备了TiO_2纳米颗粒,然后以无水三氯化铁为氧化剂,室温固相氧化聚合噻吩,得到聚噻吩(Polythiophene,PTh)敏化纳米TiO_2形成的PTh/TiO_2复合纳米粉.以XRD、TEM、DRS等方法对其相组成、形貌及其光谱特性进行了研究.结果表明,所得纳米TiO_2为纯锐钛矿晶型,平均颗粒尺寸为18 nm;PTh/TiO_2复合物具有20× 80 nm的棒状形貌;DRS中吸收限在605nm处.以甲基橙作为模型试验了产品的光催化性能,结果表明,在太阳光照射下,120 min时PTh/TiO_2对甲基橙降解率达85.6%,光催化性能优于纯TiO_2、PTh及商品Degussa P25 TiO_2光催化剂.探讨了PTh促进TiO_2光催化性能的机理. 相似文献
5.
以聚乙烯吡咯烷酮(PVP)为模板剂,钛酸四正丁酯(TBOT)为钛源,水热法制备纳米TiO2。采用XRD,SEM、TEM和UV-Vis DRS等测试手段对其形貌和结构进行表征。通过对甲基橙的光催化降解实验,探讨了焙烧温度、催化剂用量和溶液pH值对光催化性能的影响。结果表明,TiO2具有锐钛矿相,平均晶粒尺寸约为23.2 nm,TiO2颗粒呈片层状或由片层状堆积的疏松圆球形,经超声后即分散为八面体晶粒。550℃焙烧的样品,紫外光照3 h后,对甲基橙的降解率可达84.2%。相比普通水热法,采用模板剂法制得的TiO2吸收带发生红移,因而也具有较好的可见光催化活性。 相似文献
6.
超声微乳法合成TiO2-SiO2催化剂可见光光催化降解亚甲基蓝 总被引:3,自引:1,他引:3
采用可见光下亚甲基蓝的光催化降解为模型反应,考察了超声微乳法经钛酸丁酯水解合成的纳米TiO2-SiO2催化剂的性能,并用XRD和BET对催化剂进行了表征。结果表明:硅胶的加入有效地提高了TiO2-SiO2催化剂的热稳定性,抑制了热处理过程中TiO2由锐钛矿相向金红石相的转变和晶粒的长大。随着焙烧温度和TiO2含量的增加,TiO2的晶粒变大,但比表面积减少。TiO2-SiO2的光催化活性明显改善,可见光照射120min,31%TiO2/SiO2催化剂存在下,有84%亚甲基蓝光催化降解。31%TiO2/SiO2催化剂光降解亚甲基蓝的能力大大优于Degussa P-25和纯TiO2,其降解亚甲基蓝的反应速率常数分别为P-25和纯TiO2的8倍和10倍。 相似文献
7.
分别采用溶胶-凝胶法和浸渍-水热法制得负载于活性炭(AC)的TiO2催化剂,并用扫描电镜(SEM)、X射线衍射(XRD)、拉曼光谱和氮气吸附等方法对催化剂进行了表征.结果表明:溶胶-凝胶法制得的TiO2以不规则碎片形式涂附在载体表面,而浸渍-水热法制得的球形TiO2颗粒呈柱形生长均匀覆盖在载体表面;不同温度处理的浸渍-水热法制得的TiO2/AC光催化剂的中孔和微孔比表面积均大于溶胶-凝胶法制得的样品,负载的TiO2粒径则小于溶胶-凝胶法制得的样品.对甲基橙(MO)溶液的光催化降解测试结果表明,600℃煅烧为两种方法的最佳热处理温度,浸渍-水热法制得的催化剂光催化效果明显强于溶胶-凝胶法的. 相似文献
8.
采用动力学方法研究了MnO2颗粒物对TiO2光催化降解苯胺活性的影响,对比考察了光催化降解过程中苯胺溶液的UV吸收光谱的变化,并用HPLC方法鉴别了中间产物.结果表明,少量MnO2颗粒物就能使TiO2光催化降解苯胺的活性受到明显的抑制,不同结构的二氧化锰致毒效应由大到小的顺序为:δ-MnO2α-MnO2β-MnO2;降解不同时间后溶液的UV吸收光谱的变化也反映了MnO2颗粒物具有同样的致毒效应;MnO2颗粒物不改变TiO2光催化降解苯胺的途径,但对生成中间产物的基元步骤的抑制程度不同。 相似文献
9.
高纯熔石英中掺杂TiO_2可使其具有低热膨胀或无膨胀性及特殊的紫外吸收,以实现能量转换,提高红外发射率,因而对其结构研究已受到关注,我们曾用Raman光谱研究了其结构与光谱特性,本文用光电子能谱(ESCA)探讨不同TiO_2含量的熔石英中网络缺陷与钛的配位结构变化。 相似文献
10.
《中国化学快报》2016,(3)
In this work, ZnSn(OH)_6with a cubic structure is successfully synthesized by one-step hydrothermal method without any catalyst. The response and recovery characteristics of gas sensing were investigated against various gases via quartz crystal microbalance(QCM) at room temperature. The sensor exhibited high sensitivity and good selectivity toward CO gas. Moreover, a linear dependence of log~(àDelta F)about CO concentration was obtained. It is demonstrated that the QCM sensor coated cubic ZnSn(OH)_6could be a suitable candidate for detecting CO. 相似文献
11.
The gas-sensing properties and mechanism of anatase TiO2 with complete and defective {001} facets were explored and compared, which provides a more direct evidence for the high sensitivity of TiO2 with the complete {001} crystal facets. 相似文献
12.
QI He LIU Yan FENG Wei & ZHU YiMin College of Environmental Science Engineering Dalian Maritime University Dalian China 《中国科学B辑(英文版)》2009,(2)
TiO_2 sol-gel composite films with dropping molybdenumphosphoric acid(PMoA) have been prepared by sol-gel method.The structure and constitute of composite thin films were studied with Fourier transforms infrared spectroscopy(FT-IR),atomic force microscopy(AFM),and X-ray diffraction(XRD) patterns,respectively.The photochromic behavior and mechanism of composite thin films were inves-tigated with ultraviolet-visible spectra(UV-vis) and electron spin resonance(ESR).FT-IR results showed that the Keggin geometry... 相似文献
13.
Hydrothermal synthesis using graphene oxide (GO) as a precursor has been used to produce luminescent graphene quantum dots (GQDs). However, such a method usually requires many reagents and multistep pretreatments, while can give rise to GQDs with low quantum yield (QY). Here, we investigated the concentration, the temperature of synthesis, and the pH of the GO solution used in the hydrothermal method through factorial design experiments aiming to optimize the QY of GQDs to reach a better control of their luminescent properties. The best synthesis condition (2 mg/mL, 175 °C, and pH = 8.0) yielded GQDs with a relatively high QY (8.9%) without the need of using laborious steps or dopants. GQDs synthesized under different conditions were characterized to understand the role of each synthesis parameter in the materials' structure and luminescence properties. It was found that the control of the synthesis parameters enables the tailoring of the amount of specific oxygen functionalities onto the surface of the GQDs. By changing the synthesis' conditions, it was possible to prioritize the production of GQDs with more hydroxyl or carboxyl groups, which influence their luminescent properties. The as-developed GQDs with tailored composition were used as luminescent probes to detect Fe3+. The lowest limit of detection (0.136 μM) was achieved using GQDs with higher amounts of carboxylic groups, while wider linear range was obtained by GQDs with superior QY. Thus, our findings contribute to rationally produce GQDs with tailored properties for varied applications by simply adjusting the synthesis conditions and suggest a pathway to understand the mechanism of detection of GQDs-based optical sensors. 相似文献
14.
In order to prepare visible-light responsive iodine-doped TiO2, a new facile synthetic approach was proposed, which started with the cost-efficient and environmentally friendly precursor of undoped anatase TiO2 to form nanotube structures as templates that collapsed and recrystallized into I-TiO2 nanopowders in HIO3 solution, followed by annealing at different temperatures. The modification of TiO2 to incorporate iodine and form titanium dioxide with significantly enhanced absorption in the visible range of the spectrum was investigated. The extent of iodine dopant incorporation was determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX) and was found to be homogenously distributed on each nanostructure as determined by electron energy-loss spectroscopy (EELS) elemental mapping and EDX spectroscopy. The modified TiO2 exhibits a dramatically extended absorption edge beyond 800 nm as compared to the original and unmodified TiO2. 相似文献
15.
均一沉淀法云母片被覆TiO2 总被引:6,自引:1,他引:6
利用硫酸氧钛和的均一沉淀反应法,在天然矿物云母上被覆TiO2薄膜,讨论了薄膜形成主影响膜层结构的工艺因素,分阶段控制反应温度和时间有利于控制析出粒子形态和膜最,可获得均匀致密切的膜,不同厚度的膜层因光学干涉效应显示出各种色彩。 相似文献
16.
Influence of cation (NH
4
+
) on electrochemical characteristics of MnO2 nanowire synthesized by hydrothermal method 总被引:1,自引:0,他引:1
Guo-Qing Zhang Shu-Juan Bao Xiao-Gang Zhang Hu-Lin Li 《Journal of Solid State Electrochemistry》2005,9(10):655-659
Nanowires of MnO2 were prepared by a simple method in which the commercial granular -MnO2 powders were hydrothermally treated in water or ammonia solution at 150 °C. These 1D nanostructured manganese oxides were characterized physically by X-ray diffraction, scanning electron microscopy and transmission electron microscopy tests. Cyclic voltammetry and constant current discharge experiments were employed to explore the diversity of electrochemical performances; and the reasons for the difference are discussed. The experimental results indicate that the existence of NH4+ in the preparation solution has depressed the electrochemical performances of the final product; This is further confirmed by the electrochemical impedance spectra of the electrodes. 相似文献
17.
18.
We report the preparation of micro- and nano-scale hollow TiO2 fibers using a coaxial electrospinning technique and their gas sensing properties in terms of CO. The diameter of hollow TiO2 fibers can be controlled from 200 nm to several micrometers by changing the viscosity of electrospinning solutions. Lower viscosities produce slim hollow nanofibers. In contrast, fat hollow microfibers are obtained in the case of higher viscosities. A simple mathematical expression is presented to predict the change in diameter of hollow TiO2 fibers as a function of viscosity. The successful control over the diameter of hollow TiO2 fibers is expected to bring extensive applications. To test a potential use of hollow TiO2 fibers in chemical gas sensors, their sensing properties to CO are investigated at room temperature. 相似文献
19.
20.
《中国化学快报》2020,31(8):2083-2086
Using SnSO4, d-glucose, urea and water, hierarchical shell-core SnO2 microspheres were successfully synthesized via a simple hydrothermal method. The characterization results showed that the sizes of as-prepared SnO2 microspheres were 0.6–1 μm, with shell thicknesses of 40−60 nm. The shell and large core of the SnO2 microspheres were all comprised of the same basic rice-like nanoparticles with diameters of 16−25 nm and lengths of 16−45 nm. Further investigaton showed that the glucose and urea served as structural guiding agents, and urea facilitated the formation of the hierarchical structure. The as-prepared SnO2 nanomaterials were used to fabricate a gas sensor with an electrode blade used for the gas sensitivity tests. The hierarchical shell-core SnO2 microspheres exhibited high sensitivity and selectivity toward ethanol, with a responsivity of 63.8 for 50 ppm ethanol at 250 °C, while the response and recovery time were 7 s and 28 s respectively. Moreover, the responsivity of the materials showed good linearity at ethanol concentrations from 500 ppb to 10 ppm. The simple synthetic method, environmentally-friendly raw materials, and excellent gas sensitivity demonstrate that the as-prepared SnO2 nanomaterial has great potential applications for the sensing of ethanol gas. 相似文献