首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
建立了斑点叉尾鱼回(Ictalurus punctatus)体内各组织中氟苯尼考及氟苯尼考胺的检测方法。组织中加入磷酸盐缓冲液,丙酮提取,加入CH2Cl2分层,弃去上层水相,正己烷脱脂等样品处理过程;V(乙腈)∶V(0.01 mol/L NaH2PO4)(含0.005 mol/L十二烷基硫酸钠和0.10%三乙胺)=2∶3溶液为流动相,紫外检测波长为225 nm。方法在0.01~10.00 mg/L浓度范围内呈线性关系,相关系数r=0.9997。平均回收率为76.00%~92.04%,相对标准偏差为0.41%~9.2%,氟苯尼考和氟苯尼考胺在血浆、肌肉、皮肤的检出限分别为30、25μg/L,20、15μg/kg,50、50μg/kg。方法适用于氟苯尼考在鱼体内药代动力学研究和氟苯尼考及其代谢物氟苯尼考胺在鱼体肌肉和皮肤组织中残留量的同时检测。  相似文献   

2.
建立了水产品中氟苯尼考和氟苯尼考胺同时检测的高效液相色谱荧光法,以乙腈-磷酸二氢钠溶液(0.01 mol/L,含0.005 mol/L十二烷基硫酸钠和0.10%三乙胺)(体积比2:3)为流动相,流速为0.6 mL/min,荧光检测激发波长为225 nm,发射波长为280 nm.本方法氟苯尼考在10~10 000 μg/L,氟苯尼考胺在2~2 000 μg/L范围内与峰面积呈线性相关,相关系数分别为1和0.999 9.当空白样晶中氟本尼考添加水平为20~200 μg/kg,氟苯尼考胺添加水平为4~50μg/kg时,该方法的回收率为79%~91%,相对标准偏差为3.66%~6.21%,检出限分别为5 μg/kg和1 μg/kg.  相似文献   

3.
氟苯尼考的极谱法研究   总被引:2,自引:0,他引:2  
应用循环伏安法、线性扫描伏安法和控制电位电解库仑法对氟苯尼考的电化学行为进行了研究。在0 .2mol/LNaOH NaH2 PO4(pH =7.6 )缓冲液中 ,对其进行扫描 ,发现于 - 0 .886V (vs.SCE)处产生一灵敏的还原峰 ,其峰电流与氟苯尼考的浓度在 1.0× 10 -5~ 7.0× 10 -4mol/L范围内呈良好的线性关系 (r =0 .9994 ) ;检出限为 1.0× 10 -6mol/L。对 1.0× 10 -4mol/L氟苯尼考溶液进行 10次平行实验 ,RSD为 0 .3%。实验结果表明 :氟苯尼考在极谱电极上有吸附性质 ;求得了电极反应的电子转移数为 2 ;研究了电极反应机理  相似文献   

4.
氟苯尼考对映异构体手性拆分及其光学纯度的测定   总被引:1,自引:0,他引:1  
采用Chiralpak AD-H(4.6μm×250 mm,5μm)手性色谱柱,建立了氟苯尼考对映体的正相高效液相色谱拆分方法。考察了流动相中碱性添加剂、醇类改性剂种类及浓度对分离度、保留时间、理论塔板数、拖尾因子的影响。结果表明:以正己烷-异丙醇-甲醇(70∶15∶15)为流动相,流速为1 mL/min,柱温为30℃,检测波长为224 nm条件下,氟苯尼考与其光学异构体获得满意的分离效果。氟苯尼考在0.05~0.5g/L质量浓度范围内与其峰面积呈良好的线性关系,相关系数r为0.999 7;氟苯尼考的检出限为0.1μg/L;日内精密度RSD小于1.8%,日间精密度RSD小于2.3%;加标回收率为109%~112%,RSD不大于3.0%。该方法快速、方便,可用于工业生产中氟苯尼考光学纯度的控制。  相似文献   

5.
建立了定量检测氟苯尼考的胶体金免疫层析方法.对胶体金标记抗体时溶液pH和抗体浓度、金标抗体用量、检测线上抗原浓度以及检测时间进行了优化.采用胶体金试纸条读取仪测定试纸条检测线和质控线的信号强度,以标准品的浓度为横坐标,阳性样本和阴性样本的检测线/质控线的信号比值(Bx/B0)为纵坐标建立标准曲线.结果表明,胶体金免疫层析试纸定量检测氟苯尼考的线性范围为0.1~1.5 ng/mL,检出限为0.08 ng/mL,检测时间为15 min.本方法具有简便、快速和可定量等特点,适于大批量样品的现场筛查.  相似文献   

6.
建立了超高效液相色谱-串联质谱(UPLC/MS/MS)检测土壤中多种环境基质下呋喃唑酮和氟苯尼考的方法.提取液采用磷酸盐缓冲溶液(pH=3)-乙腈(3:7,V/V),经过SPE固相萃取小柱SAX-HLB串联富集,使用Waters BEH C18色谱柱(2.1×100 mm)进行分离,UPLC/MS/MS在多反应监测模式下进行定性与定量分析.以3倍信噪比确定方法检出限,以10倍信噪比确定方法定量限.结果表明,本方法在5 min内即可分离两种物质,呋喃唑酮和氟苯尼考的检出限分别为1.19和0.41μg/kg;定量限分别为3.40和1.37μg/kg.50μg/L加标水平的呋喃唑酮和氟苯尼考的回收率分别为92%和79%;200μg/L加标水平下呋喃唑酮与氟苯尼考的回收率分别为96%和86%.  相似文献   

7.
针对动物源性食品及饲料中氟苯尼考的残留问题,通过抗原制备、动物免疫和细胞融合筛选,成功得到可高特异性识别氟苯尼考的单克隆抗体,并建立了氟苯尼考的间接竞争酶联免疫分析(icELISA)方法.经单因素实验优化策略,确定最佳反应条件为:包被抗原质量浓度0.05μg/mL,抗体质量浓度为0.1μg/mL,最佳药物、抗体和二抗稀...  相似文献   

8.
氟苯尼考琥珀酸单酯的合成工艺优化   总被引:1,自引:0,他引:1  
以氟苯尼考和琥珀酸酐为原料,4-二甲氨基吡啶(DMAP)催化合成了氟苯尼考琥珀酸单酯。通过正交试验确定最佳反应条件为:氟苯尼考14 mmol,n(氟苯尼考)∶n(琥珀酸酐)=1.0∶1.5,w(DMAP)=4%,于60℃反应4 h,产率88.1%。在最佳反应条件下做放大实验,氟苯尼考3 kg,产率88.9%  相似文献   

9.
在10.0 g猪肉样品中加入含3%(体积分数)氨水的乙酸乙酯溶液25 mL,涡旋1 min混匀,离心5 min,所得沉淀用上述方法再重复提取一次。合并两次提取液,于40℃减压浓缩至近干,用10 mL磷酸盐缓冲溶液(pH 6.0)溶解残渣。所得溶液过活化好的HLB固相萃取柱,用10 mL水淋洗,真空抽柱1 min,用6 mL甲醇洗脱。收集洗脱液,于40℃氮吹至近干,加入体积比8∶2的正庚烷-异丙醇混合溶液1 mL,涡旋3 min溶解残渣,过0.22μm有机滤膜,滤液供超高效合相色谱仪分析。采用CHIRALPAK AD-3手性色谱柱作固定相,设置柱温40℃,系统背压13.8 MPa,以不同体积比的超临界二氧化碳和含0.5%(体积分数)氨水的甲醇溶液的混合溶液为流动相进行梯度洗脱,在检测波长224 nm处用外标法测定(-)-氟苯尼考、(+)-氟苯尼考及它们的代谢物氟苯尼考胺的含量。结果显示:3种目标化合物的质量浓度在0.50~20.00 mg·L^(-1)内与其对应的峰面积呈线性关系,测定下限为0.05 mg·kg^(-1)[(-)-氟苯尼考和(+)-氟苯尼考]和0.1 mg·kg^(-1)(氟苯尼考胺)。以阴性猪肉样品为基质进行3个浓度水平的加标回收试验,3种目标化合物的回收率为81.2%~107%,测定值的相对标准偏差(n=6)为5.0%~9.0%。方法用于20份猪肉样品的分析,仅在1份样品中检出(-)-氟苯尼考(248μg·kg^(-1))。  相似文献   

10.
建立了同时测定水产品中氯霉素、甲砜霉素、氟苯尼考和氟苯尼考胺的固相萃取-气相色谱方法。用98:2(V/V)的乙酸乙酯和氨水提取鱼体中的氯霉素、甲砜霉素、氟苯尼考和氟苯尼考胺,用MCX固相萃取小柱对提取物进行净化和富集,经98:2(V/V)的甲醇和氨水混合溶液洗脱后氮吹浓缩,并用乙腈复溶,再用BSTFA衍生化和气相色谱仪检测。实验条件下,氯霉素浓度在5~50μg/L范围,甲砜霉素、氟苯尼考和氟苯尼考胺浓度在15~100μg/L范围内线性良好,相关系数分别为0.9909,0.9937,0.9948和0.9916,检出限分别为0.3,1.0,1.0和1.0μg/kg,7次加标回收率为71.8%~105%,相对标准偏差在8.1%~15%之间。  相似文献   

11.
建立了中华鳖(Trionyx sinensis)组织(血浆、肌肉、裙边、肝脏和肾脏)中氯硝柳胺、氯霉素、甲砜霉素、氟苯尼考和氟苯尼考胺同时测定的高效液相色谱-加热电喷雾电离源串联质谱法(HPLC-HESI/MS/MS)。样品经改进的QuEChERS方法提取净化,以氨化乙腈为提取剂,十八烷基硅烷键合硅胶(C18)粉为净化剂,甲醇-水为流动相,流速为0.3 mL/min,以Waters Symmetry~ C_(18)(2.1 mm×100 mm,3.5μm)为色谱分离柱,采用正负离子分段扫描和多反应监测模式(MRM)检测。氯霉素、甲砜霉素、氟苯尼考和氟苯尼考胺采用内标标准曲线法定量,氯硝柳胺采用基质匹配标准曲线外标法定量。结果表明,在0.3~100μg/L范围内,5种待测物均呈良好的线性关系,相关系数(r2)均不小于0.998 7。在1~20μg/kg加标水平下,中华鳖空白血浆、肌肉、裙边、肝脏和肾脏的加标回收率为77.9%~105.3%(n=6),相对标准偏差为2.7%~10.5%(n=6),方法的检出限分别为0.5、0.1、0.5、0.5、0.5μg/kg,定量下限分别为1.0、0.3、1.0、1.0、1.0μg/kg。该方法操作简便、准确、灵敏度高,适用于中华鳖组织中氯硝柳胺、氯霉素、甲砜霉素、氟苯尼考和氟苯尼考胺残留量的同时测定。  相似文献   

12.
Shi X  Song S  Sun A  Liu J  Li D  Chen J 《The Analyst》2012,137(14):3381-3389
Group-selective molecularly imprinted polymers (MIPs) for amphenicol antibiotics, including chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF), and florfenicol amine (FFA), were developed for the first time using TAP as the template molecule. The characteristics of the obtained MIPs were systematically evaluated by chromatographic methods and frontal analysis, demonstrating that the MIPs had excellent chromatographic behaviors, good selectivity, and high-binding capability. A molecularly imprinted solid-phase extraction (MISPE) procedure was developed based on the chromatography results. The MIPs exhibited better group selectivity for CAP, TAP, FF, and FFA than non-imprinted polymers (NIPs) under the optimized washing conditions of 10% acetonitrile in PBS buffer (25 mmol L(-1), pH = 5). Compared with conventional solid-phase extraction, significant recoveries ranging from 92.4% to 98.8% with lower relative standard deviation values in the range of 3.2-7.3% for both intraday- and interday-assays were obtained. The limits of detection (LODs) of MISPE for CAP, TAP, FF, and FFA in shrimp were found to be 0.016, 0.093, 0.102, and 0.029 μg kg(-1), respectively. The results acquired in this study contribute to the strategic development of MIPs and MISPE methods for the multi-residual recognition of antibiotics from complex matrices.  相似文献   

13.
In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H]+ dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M–H]?, while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high‐resolution mass spectrometry in a quadrupole‐Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N‐(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS3 and MS4 spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high‐performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Alechaga É  Moyano E  Galceran MT 《The Analyst》2012,137(10):2486-2494
A method based on ultra-high performance liquid chromatography (UHPLC) is proposed for the determination of chloramphenicol (CAP), its related compounds, thiamphenicol (TAP) and florfenicol (FF), and the polar metabolite florfenicol-amine (FFA), in animal-derived foods (chicken and pork meat, fish, prawns and honey). For the retention of FFA and its simultaneous analysis with the parent compounds a phenyl-hexyl column is proposed. A fast separation is achieved in less than 2 minutes using a methanol : acetic acid-ammonium acetate buffer (5 mM, pH 5) and gradient elution. Under these conditions, the FFA is retained at more than twice the dead volume, as recommended by the legislation. For the coupling with mass spectrometry, heated-electrospray (H-ESI) is used as ionisation source improving vaporization efficiency. To prevent interferences using selected-reaction monitoring (SRM) both quantitation and confirmation transitions were carefully selected. Two different sample treatments based on solid-phase extraction with mixed-mode cartridges for fish and meat products and hydrophilic-lipophilic-balanced cartridges for honey are proposed, providing limits of quantitation (LOQs) below μg kg(-1) level.  相似文献   

15.
A rapid and sensitive gas chromatography method was developed for the simultaneous determination of florfenicol (FF) and its metabolite florfenicol amine (FFA) in fish, shrimp, and swine muscle. The extracted samples were defatted with hexane and cleaned up by solid-phase extraction using Oasis MCX cartridges. The eluate was evaporated to dryness, and residues were derivatized and determined by gas chromatography with a microcell electron capture detector. Overall average recoveries ranged from 81.7 to 109.7% for fish, 94.1 to 103.4% for shrimp, and 71.5 to 91.4% for swine muscle. The detection limit was 0.5 ng/g for FF and 1 ng/g for FFA, respectively. The method was validated for the determination of incurred swine muscle samples in an actual residue study.  相似文献   

16.
Anovel fluorescent probe has been constructed based on fluorescence resonance energy transfer(FRET) between upconversion nanomaterials(UCNPs) NaYF4:Yb,Er and gold nanoparticles(AuNPs). The fluorescent "off-on" switching was formed for the detection of thiamphenicol(TAP) in egg samples. The fluorescence of UCNPs can be quenched to a certain degree by AuNPs. After adding TAP, the AuNPs generated aggregation and the fluorescence of UCNPs was recovered. The synthesized amination UCNPs and AuNPs were characterized by Fourier transform infrared spectroscopy(FTIR), UV-Vis, X-ray diffraction(XRD), energy dispersive spectrometer(EDS), and transmission electron microscope(TEM) techniques for observation and confirmation. As a model target, the detection of TAP has two linear ranges in the buffer solution within 0.01-0.1 μmol/L and 0.1-1 μmol/L using this fluorescent probe. The detection limit was obtained to be 0.003 μmol/L(S/N=3), which is favorable for trace analysis. The recovery of TAP from 98.2% to 105.3% was obtained, and the relative standard deviation(RSD) was from 2.5% to 4.3%. Furthermore, the method established in this study based on the UCNPs auto-low background fluorescence has high selectivity and strong ability to eliminate interference, which is beneficial to analyzing complex samples.  相似文献   

17.
建立了气相色谱-负离子化学电离源质谱同时测定动物组织中氯霉素(CAP)、甲砜霉素(TAP)和氟甲砜霉素(FF)残留量的方法。样品用乙酸乙酯提取,正己烷分配去脂肪,再用Florisil柱进一步净化,甲苯作为反应介质,用N,O-双(三甲基硅基)三氟乙酰胺(BSTFA)-三甲基氯硅烷(TMCS)(体积比为99∶1)进行硅烷化处理,用间硝基氯霉素(m-CAP)作为内标进行测定。CAP的检测限可达到0.03 μg/kg,TAP和FF的检测限可达到0.2 μg/kg;上述3种药物的标准曲线的线性相关系数均大于0.99。CAP,FF和TAP的批内测定的精密度(以相对标准偏差表示)依次为5.5%,10.4%和8.8%;批间测定的精密度依次为7.4%,20.7%和19.1%。回收率为80.0%~111.5%,相对标准偏差为1.2%~15.4%。该方法前处理步骤简单,处理后杂质干扰少,灵敏度高,适用性强,可用于猪肉及禽类、水产品等多种动物组织中氯霉素类药物残留的检测。  相似文献   

18.
Rapid and sensitive indirect competitive enzyme‐linked immunosorbent assays (ic‐ELISA) and gold nanoparticle immunochromatographic strip tests were developed to detect thiamphenicol (TAP), florfenicol (FF) and chloramphenicol (CAP) in milk and honey samples. The generic monoclonal antibody for TAP, FF and CAP was prepared based on a hapten [D ‐threo‐1‐(4‐aminophenyl)‐2‐ dichloroacetylamino‐1,3‐propanediol], and the haptenwas linked to a carrier protein using the diazotization method. After the optimization of several parameters (coating, pH, sodium chloride content and methanol content), the ic‐ELISA was established. The quantitative working range for TAP was 0.11–1.36 ng/mL, with an IC50 of 0.39 ng/mL. The optimized ELISA showed cross‐reactivity to CAP (300%) and FF (15.6%), with IC50 values of 0.13 and 2.5 ng/mL, respectively. The analytical recovery of TAP, FF and CAP in milk and honey samples in the ic‐ELISA ranged from 81.2 to 112.9%. Based on this monoclonal antibody, a rapid and sensitive immunochromatographic test strip was also developed. This strip had a detection limit of 1 ng/mL for TAP, FF and CAP in milk and honey samples. Moreover, the test was completed within 10 min. Our results showed that the proposed ic‐ELISA and immunochromatographic test strip method are highly useful screening tools for TAP, FF and CAP detection in milk and honey samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The bioequivalence of two Florfenicol (FF) products in pigs was evaluated. A 2?×?2 crossover trial with a 14 days wash-out period was performed. The pigs were orally administered in a single dose (2?mg/kg b.w of FF). Serum samples were analyzed using a liquid chromatography-tandem mass spectrometry method. The limit of quantification was 0.1?ng/mL, and the calibration range was 1.0–100.0?ng/mL. Furthermore, intraday and interday were 5.43–9.09% and 6.23–9.68%, respectively. The areas under the curve (AUC0–48) for the test product B of FF and reference product A were 7289.61?±?1750.44 and 6545.01?±?2766.25?h?×?ng/mL, respectively. The highest concentrations of FF in the serum (Cmax) were 726.05?±?211.77 and 641.97?±?117.94?ng/mL. The mean retention times (MRT) was 7.91?±?1.98 and 7.76?±?2.89?h while the half-lives (T1/2) were 4.07?±?1.71 and 4.99?±?3.30?h. From the analysis of variance results, the p values of Cmax and AUC0–∞ for the 90% confidence interval were 0.492 and 0.320 (p?>?0.05), respectively. A comparison between the test product and the reference product showed no significant difference. Both products showed bioequivalence after being administered in pigs.  相似文献   

20.
建立了简便、灵敏、科学和可靠的液相色谱-串联质谱测定鸡肉中喹乙醇残留标示物3-甲基喹恶啉-2-羧酸(MQCA)的分析方法。采用给鸡灌服喹乙醇的方式,获得含MQCA的鸡肉试样,比较了酶解、酸解和碱解等方法水解鸡肉中MQCA的效率,实验表明,碱水解鸡肉组织得到最高含量的MQCA。样品经1.0 mol/L氢氧化钠溶液水解,正己烷除脂,MAX混合型阴离子交换固相萃取柱直接净化,采用C18反相色谱柱分离,质谱选择反应监测模式检测。结果表明:MQCA在1.0~100 μg/L范围内线性关系良好,相关系数(r2)大于0.99;方法检出限为0.4 μg/kg。在1.0、5.0和50.0 μg/kg 3个添加水平下,采用外标法定量,MQCA的平均回收率为71.7%~82.4%,采用内标法定量,其回收率为96.3%~103.7%,相对标准偏差均小于6.0%。该方法适用于动物性食品中3-甲基喹恶啉-2-羧酸残留的日常监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号