首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成了一种Zn2+荧光探针N-(8-对氨基苯磺酰)胺基喹啉(HQAS),探讨了HQAS与Zn2+的键合比和配位模式,以及不同pH,其它金属离子对Zn2+检测的影响.研究结果显示:该探针与Zn2+形成配合物,使其荧光增强,键合比为2:1,pH 7.2时荧光强度增大9.4倍.大多数金属离子几乎不干扰Zn2+的检测,Cu2+...  相似文献   

2.
《Comptes Rendus Chimie》2014,17(6):557-562
Chromophoric sensors were made based on 8-hydroxyquinoline immobilized onto a thin film of a polymer blend matrix. The thin films were made by the solution casting method using cellulose triacetate and polyethylene glycol (PEG 600) as plasticizer and pore-forming agent. Different contents of PEG 600 additive were investigated. The prepared films were characterized by FTIR and thermal analysis. The absorption and fluorescence spectra of different films were dependent on the content of PEG 600 with clear quenching of the fluorescence of the film that contains PEG 600 compared to that with zero content. This behavior was attributed to the collective effect of hydrogen bonding (intra- and intermolecular hydrogen bonding) that enhances the process of excited-state proton transfer. This result is favorable to a responsive sensor that shows fluorescence off in the absence of metal ions and fluorescence on upon metal ion chelation. The detection of 5 × 10−5 M of Al3+, Zn2+ and thallium (I) in aqueous solution has been observed with the fluorescence method. The result obtained is consistent with the enhancing effect of PEG 600 in the detectability of metal ions. Compared with the detection of Al3+ and Zn2+, the sensor shows better detection of thallium (I), with clear fluorescence spectra.  相似文献   

3.
A protein labeling approach is employed for the localization of a zinc-responsive fluorescent probe in the mitochondria and in the Golgi apparatus of living cells. ZP1, a zinc sensor of the Zinpyr family, was functionalized with a benzylguanine moiety and thus converted into a substrate (ZP1BG) for the human DNA repair enzyme alkylguaninetransferase (AGT or SNAP-Tag). The labeling reaction of purified glutathione S-transferase tagged AGT with ZP1BG and the zinc response of the resulting protein-bound sensor were confirmed in vitro. The new detection system, which combines a protein labeling methodology with a zinc fluorescent sensor, was tested in live HeLa cells expressing AGT in specific locations. The enzyme was genetically fused to site-directing proteins that anchor the probe onto targeted organelles. Localization of the zinc sensors in the Golgi apparatus and in the mitochondria was demonstrated by fluorescence microscopy. The protein-bound fluorescence detection system is zinc-responsive in living cells.  相似文献   

4.
Substitution of one pyridine by pyrazine in each DPA appendage of ZP1 leads to a new zinc sensor, ZPP1, with a modified background fluorescence and zinc affinity. ZPP1 exhibits a two-step zinc response during fluorescence titrations, which leads to a new method for zinc quantification. The ability of ZPP1 to image and quantify zinc was demonstrated in pancreatic Min6 cells.  相似文献   

5.
The syntheses and spectroscopic properties of a series of pegylated zinc(II)-phthalocyanines (Zn-Pcs) containing one, two, or eight tri(ethylene glycol) chains are described. The single molecular structure of a phthalonitrile precursor containing one hydroxyl and one PEG group, and its unique intermolecular hydrogen bonding are presented. The pegylated Pcs are highly soluble in polar organic solvents and have fluorescence quantum yields in the range 0.08-0.28.  相似文献   

6.
荧光化学敏感器(FluorescenceChemicalSensor,FCS)是近年来得到迅速发展用以检测外来物种的一种新方法.一般说来,它由下列三个部分所组成:(1)外来物种的接受体部分,(2)荧光发射部分,(3)连接体部分.作为接受体部分的设计是决定FCS在检测物种时的选择性或专一性的关键所在.因此其设计往往要和拟检测物种的结构特征相联系.荧光发射部分的选定则和FCS的灵敏度相关,适当的选择会使FCS的接受体在接受外来物种后,能灵敏地引起荧光发射强度或特征发射波长的变化,使人们可敏锐地发觉所…  相似文献   

7.
An approach is presented for the design of photoinduced electron-transfer-based sensors. The approach relies on the computational and theoretical prediction of electron-transfer kinetics based on Rehm-Weller and Marcus theories. The approach allows evaluation of the photophysical behavior of a prototype fluorescent probe/sensor prior to the synthesis of the molecule. As a proof of concept, a prototype sensor for divalent metal ions is evaluated computationally, synthesized, and then analyzed spectroscopically for its fluorescence response to zinc. Calculations predicted that the system would show a competition between electron transfer and fluorescence in the free state. In the zinc-bound state, the compound was predicted to be more highly fluorescent, due to the inhibition of electron transfer. Both predictions were confirmed experimentally. A nonzero fluorescence signal was observed in the absence of zinc and an enhancement was observed in the presence of zinc. Specifically, a 56-fold enhancement was observed over a 10-fold increase in zinc concentration.  相似文献   

8.
A new fluorescent sensor for zinc that binds 1 equivalent of zinc ion, N,N,N',N'-tetrakis(2-quinolylmethyl)ethylenediamine (TQEN), has been prepared and characterized. Zinc-bound TQEN exhibits fluorescence around 383 nm upon excitation at 317 nm, while free TQEN emits very weak fluorescence. UV-Vis and 1H NMR spectral changes also detected the binding of TQEN with zinc ion. The crystal structure of zinc complex with TQEN was determined by X-ray crystallography and compared with that of the TPEN-Zn complex (TPEN =N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine). The binding affinity of TQEN with zinc ion is very high (Kd < 1 microM in aqueous dmf solution). Competition experiments reveal that the zinc-binding affinity of TQEN is lower than the parent, strong metal ion chelator TPEN, and comparable to EGTA (EGTA = ethylene glycol-bis(2-aminomethyl)-N,N,N',N'-tetraacetic acid).  相似文献   

9.
We present a mobile trap algorithm to sense zinc ions using protein-based sensors such as carbonic anhydrase (CA). Zinc is an essential biometal required for mammalian cellular functions although its intracellular concentration is reported to be very low. Protein-based sensors like CA molecules are employed to sense rare species like zinc ions. In this study, the zinc ions are mobile targets, which are sought by the mobile traps in the form of sensors. Particle motions are modeled using random walk along with the first passage technique for efficient simulations. The association reaction between sensors and ions is incorporated using a probability (p1) upon an ion-sensor collision. The dissociation reaction of an ion-bound CA molecule is modeled using a second, independent probability (p2). The results of the algorithm are verified against the traditional simulation techniques (e.g., Gillespie's algorithm). This study demonstrates that individual sensor molecules can be characterized using the probability pair (p1,p2), which, in turn, is linked to the system level chemical kinetic constants, kon and koff. Further investigations of CA-Zn reaction using the mobile trap algorithm show that when the diffusivity of zinc ions approaches that of sensor molecules, the reaction data obtained using the static trap assumption differ from the reaction data obtained using the mobile trap formulation. This study also reveals similar behavior when the sensor molecule has higher dissociation constant. In both the cases, the reaction data obtained using the static trap formulation reach equilibrium at a higher number of complex molecules (ion-bound sensor molecules) compared to the reaction data from the mobile trap formulation. With practical limitations on the number sensors that can be inserted/expressed in a cell and stochastic nature of the intracellular ionic concentrations, fluorescence from the number of complex sensor molecules at equilibrium will be the measure of the intracellular ion concentration. For reliable detection of zinc ions, it is desirable that the sensors must not bind all the zinc ions tightly, but should rather bind and unbind. Thus for a given fluorescence and with association-dissociation reactions between ions and sensors, the static trap approach will underestimate the number of zinc ions present in the system.  相似文献   

10.
In the present article, tetraphenylporphyrin a new ratiometric fluorescence sensitizer for zinc ion has been proposed. Electronic absorption, emission and (1)H NMR spectral characteristics of meso-tetraphenylporphyrin (TPP) have been studied in acetonitrile medium in the presence of zinc perchlorate. Absorption spectral studies indicate the formation of a new complex between zinc ion and the porphyrin moiety in the ground state as distinguished from the characteristics of metalo(zinc) porphyrin compound. The energy of maximum fluorescence of porphyrin shifts towards blue with the addition of Zn(ClO(4))(2). Steady state emission studies point to the existence of two emitting species viz, the solvated and the complexed porphyrin in equilibrium. The fluorescence emission of tetraphenylporphyrin at 651-nm bands decreases while that at 605 nm increases upon zinc ion interaction in acetonitrile. Thus, the TPP can behave as a ratiometric fluorescent sensor. This fluorescence modulation of TPP should be applicable to dual-wavelength measurement of various biomolecules or enzyme activities. (1)H NMR spectra of the porphyrin suffered a radical change with the addition of zinc perchlorate which points to the formation of a new porphyrin complex. This change is due to the difference in the electron-donating ability of the pyrrolic nitrogens before and after complexation with Zn(2+). The values of equilibrium constant for the binding process have been determined in acetone and acetonitrile, in both ground and excited states.  相似文献   

11.
Esterification of fluorescent biosensors is a common strategy used to trap probes within the cell. Zinpyr-1 (ZP1) is a fluorescein-based bright fluorescent sensor for divalent zinc that is cell permeable without prior modification. We describe here the synthesis and characterization of ZP1 sensors containing a carboxylic acid or ethyl ester functionality at the 5 or 6 position of the fluorescein. The presence of an electronegative carboxylate decreases the proton-induced background fluorescence of the probe by lowering the pKa of the benzylic amines responsible for fluorescence quenching. The charged species ZP1(6-CO2-) is membrane-impermeant, whereas the permeability of the neutral ZP1(5/6-CO2Et) is similar to that of the parent sensor. Intracranial microinfusion of ZP1(6-CO2Et) into rat hippocampus produces reduced staining of vesicular zinc in neuropil and very clear delineation of zinc-positive injured neuronal somata and dendrites as compared with ZP1.  相似文献   

12.
A highly Y3+-selective fluorescence sensor has been developed using zinc porphyrin-CONH-quinone dyad (ZnP-CONH-Q). The selective binding of the Q moiety of ZnP-CONH-Q with Y3+ retards electron transfer from the singlet excited state (1ZnP*) to Q, leading to a remarkable enhancement of the fluorescence intensity.  相似文献   

13.
Liu Y  Zhang N  Chen Y  Wang LH 《Organic letters》2007,9(2):315-318
A water-soluble fluorescent zinc sensor which binds strongly to Zn2+ (log K = 12.4) was successfully synthesized under physiological conditions. This sensor exhibits a good fluorescence response to Zn2+ over a wide pH range in water. Under the same conditions, several metal ions commonly present in a physiological environment, such as Na+, K+, Ca2+, Mg2+, Mn2+, Fe2+, and Co2+, showed little interference to the fluorescence response to Zn2+. [structure: see text]  相似文献   

14.
Wild A  Winter A  Hager MD  Schubert US 《The Analyst》2012,137(10):2333-2337
A poly(ethylene glycol) (PEG) decorated bis(terpyridine) zinc coordination polymer acts as an anion-responsive material in 100% aqueous solution. Depending on the binding and association constants to Zn(II), the addition of different anions leads to increased emission intensity and/or a shift of the emission wavelength. The sensor was addressed with a collection of common salts to survey the selectivity of the emission response. Phosphate and cyanide, representing the strongest anion binding to zinc(II), were detected even in the presence of other ions in tap water. Biologically relevant phosphates such as diphosphates and adenosine-5'-triphosphate (ATP) also produced a strong response. Because the binding constants with Zn(II) are very high, anion concentrations in the range of 10(-6) to 10(-7) M are sufficient.  相似文献   

15.
A water‐soluble benzenesulfonamidoquinolino‐β‐cyclodextrin has been successfully synthesized in 30 % yield by incorporating a N‐(8‐quinolyl)‐p‐aminobenzenesulfonamide (HQAS) group to β‐cyclodextrin through a flexible linker. This compound exhibits a good fluorescence response in the presence of Zn2+ in water but gives poor fluorescence responses with other metal ions commonly present in a physiological environment under similar conditions. Fluorescence microscopic and two‐dimensional NMR experiments showed that benzenesulfonamidoquinolino‐β‐cyclodextrin could bind to the loose bilayer membranes. As a result, benzenesulfonamidoquinolino‐β‐cyclodextrin was found to act as an efficient cell‐impermeable Zn2+ probe, showing a specific fluorescent sensing ability to Zn2+‐containing damaged cells whilst exhibiting no response in the presence of healthy cells.  相似文献   

16.
17.
Weng YQ  Yue F  Zhong YR  Ye BH 《Inorganic chemistry》2007,46(19):7749-7755
A new copper(II) fluorescent sensor 5,10,15,20-tetra((p-N,N-bis(2-pyridyl)amino)phenyl)porphyrin zinc (1) has been designed and synthesized by the Ullmann-type condensation of bromoporphyrin zinc with 2,2'-dipyridylamine (dpa) under copper powder as a catalyst as well as with K2CO3 as the base in a DMF solution. It consists of two separately functional moieties: the zinc porphyrin performs as a fluorophore, and the dpa-linked-to-zinc porphyrin acts as a selected binding site for metal ions. It displays a high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, Mg2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, and Fe3+) and exhibits fluorescence quenching upon the binding of the Cu2+ ion with an "on-off"-type fluoroionophoric switching property. The detection limit is found to be 3.3 x 10(-7) M (3s blank) for Cu2+ ion in methanol solution, and its fluorescence can be revived by the addition of EDTA disodium solution. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of fluorescent sensors for metal ions.  相似文献   

18.
A new phosphorescent zinc sensor (ZIrF) was constructed, based on an Ir(III) complex bearing two 2-(2,4-difluorophenyl)pyridine (dfppy) cyclometalating ligands and a neutral 1,10-phenanthroline (phen) ligand. A zinc-specific di(2-picolyl)amine (DPA) receptor was introduced at the 4-position of the phen ligand via a methylene linker. The cationic Ir(III) complex exhibited dual phosphorescence bands in CH(3)CN solutions originating from blue and yellow emission of the dfppy and phen ligands, respectively. Zinc coordination selectively enhanced the latter, affording a phosphorescence ratiometric response. Electrochemical techniques, quantum chemical calculations, and steady-state and femtosecond spectroscopy were employed to establish a photophysical mechanism for this phosphorescence response. The studies revealed that zinc coordination perturbs nonemissive processes of photoinduced electron transfer and intraligand charge-transfer transition occurring between DPA and phen. ZIrF can detect zinc ions in a reversible and selective manner in buffered solution (pH 7.0, 25 mM PIPES) with K(d) = 11 nM and pK(a) = 4.16. Enhanced signal-to-noise ratios were achieved by time-gated acquisition of long-lived phosphorescence signals. The sensor was applied to image biological free zinc ions in live A549 cells by confocal laser scanning microscopy. A fluorescence lifetime imaging microscope detected an increase in photoluminescence lifetime for zinc-treated A549 cells as compared to controls. ZIrF is the first successful phosphorescent sensor that detects zinc ions in biological samples.  相似文献   

19.
Kwon JE  Lee S  You Y  Baek KH  Ohkubo K  Cho J  Fukuzumi S  Shin I  Park SY  Nam W 《Inorganic chemistry》2012,51(16):8760-8774
A new fluorescent zinc sensor (HNBO-DPA) consisting of 2-(2'-hydroxy-3'-naphthyl)benzoxazole (HNBO) chromophore and a di(2-picolyl)amine (DPA) metal chelator has been prepared and examined for zinc bioimaging. The probe exhibits zinc-induced fluorescence turn-on without any spectral shifts. Its crystal structure reveals that HNBO-DPA binds a zinc ion in a pentacoordinative fashion through the DPA and HNBO moieties. Steady-state photophysical studies establish zinc-induced deprotonation of the HNBO group. Nanosecond and femtosecond laser flash photolysis and electrochemical measurements provide evidence for zinc-induced modulation of photoinduced electron transfer (PeT) from DPA to HNBO. Thus, the zinc-responsive fluorescence turn-on is attributed to suppression of PeT exerted by deprotonation of HNBO and occupation of the electron pair of DPA, a conclusion that is further supported by density functional theory and time-dependent density functional theory (DFT/TD-DFT) calculations. Under physiological conditions (pH 7.0), the probe displays a 44-fold fluorescence turn-on in response to zinc ions with a K(d) value of 12 pM. The fluorescent response of the probe to zinc ions is conserved over a broad pH range with its excellent selectivity for zinc ions among biologically relevant metal ions. In particular, its sensing ability is not altered by divalent transition metal ions such as Fe(II), Cu(II), Cd(II), and Hg(II). Cell experiments using HNBO-DPA show its suitability for monitoring intracellular zinc ions. We have also demonstrated applicability of the probe to visualize intact zinc ions released from cells that undergo apoptosis. More interestingly, zinc-rich pools in zebrafish embryos are traced with HNBO-DPA during early developmental stages. The results obtained from the in vitro and in vivo imaging studies demonstrate the practical usefulness of the probe to detect zinc ions.  相似文献   

20.
Water-soluble Mn2+-doped ZnS nanocrystals surface capped with polyethylene glycol(expressed as PEG-ZnS:Mn2+) were synthesized in aqueous solution with PEG as surface modifier without ligand exchange.The particles were obtained via chemical precipitation method at 100 ℃ with an average diameter of 3 nm and a zinc blende structure.The PEG modified on the surface of PEG-ZnS:Mn2+ nanocrystals rendered the nanocrystals water soluble and biocompatible.And the PEG-ZnS:Mn2+ nanocrystals have the potential application in molecular assembly and biological fluorescence analysis.The effects of the Mn2+ concentration,stabilizer concentration,and synthesis time on the photoluminescence(PL) intensity of ZnS:Mn2+ QDs were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号