首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pöppl  L.  Tóth  E.  Tóth  M.  Pászli  I.  Izvekov  V.  Gábor  M. 《Journal of Thermal Analysis and Calorimetry》1998,53(2):585-596
Cross-linked montmorillonite was prepared by reacting homoionic sodium form of bentonite (Na-M) from Istenmezeje (Hungary) with high molecular weight polyhydroxy-aluminum complex. The complex was prepared by controlled hydrolysis of alumina macrocation. The intercalated clay (Na-Al-M) was thermally treated to convert the hydroxy cations to oxide pillars. The pillared products were characterized by X-ray powder diffraction (XRD), Fourie transform infrared spectroscopy (FTIR), (thermogravimetry (TG), differential thermal analysis (DTA) and thermal analysis-mass spectrometry (TA-MS) methods. The specific surface area as well as pore size and pore structure distribution of samples were measured by nitrogen, water and carbon tetrachloride adsorption, and the heat of immersion was also determined. The pillared products were characterized by d(001) reflections of 19 Å, which is stable even at 500°C. The interaction of polymer alumina caused several changes in the obtained FTIR spectra due to the formation of different new bonds. The rate of dehydroxylation of the pillared product is very moderate, the water release occurred in different temperature ranges according to TA-MS results. Dehydration starts at interfaces and at the wall of pores, occurring nearly with uniform rate at 250-500°C. DTA curve indicates the formation of a new phase at 950°C. The obtained surface area of the pillared product by nitrogen adsorption becomes larger (208 m2 g-1) with respect to the non pillared clay, which decreases less than 10% upto 700°C. The pillared sample has a definite pore structure, the quantity of micropores (0-40 Å) decreased with increasing of macropores (>1000 Å). The obtained domestic pillared montmorillonite possesses a high degree of thermal stability and may be used as adsorbent.  相似文献   

2.
Composite adsorbents of carbon and alumina intercalated montmorillonite were prepared and characterized by adsorption of N2and O2at various temperatures. The effects of pyrolysis, temperature, heating rate, subsequent degassing, and doping of cations and anions were investigated. The adsorption capacities of the composite adsorbents developed at higher temperatures (0 and −79°C) are found to be larger than those of normal alumina pillared clays. The experimental results showed that the framework of these adsorbents is made of alumina particles and clay sheets while the pyrolyzed carbon distributes in the space of interlayers and interpillars. The pores between the carbon particles, clay sheets, and alumina pillars are very narrow with very strong adsorption forces, leading to enhanced adsorption capacities at 0 and −79°C. The composite adsorbents exhibit features similar to those of carbonaceous adsorbents. Their pore structures, adsorption capacities, and selectivities to oxygen can be tailored by a controlled degassing procedure. Meanwhile, ions can be doped into the adsorbents to modify their adsorption properties, as usually observed for oxide adsorbents like zeolite and pillared clays. Such flexibility in pore structure tailoring is a potential advantage of the composite adsorbents developed for their adsorption and separation applications.  相似文献   

3.
高稳定性层柱粘土分子筛的催化性能   总被引:2,自引:1,他引:2  
本文用酸碱滴定和红外光谱等方法对新型多孔材料——高稳定性层柱粘土分子筛(简称AlR)的表面酸性,催化活性和选择性进行了测定和研究,发现AlR的催化特性与HY和U8Y沸石有明显差别。根据实验研究,可以推测,AlR这种新型催化剂材料适用于有效酸强度较弱的大分子酸催化反应。  相似文献   

4.
Emanation Thermal Analysis (ETA), based on the measurement of the release of radon from previously labelled samples, has been used for 'in-situ’ characterisation of the morphology changes of intercalated montmorillonitic clay. The thermal behaviour of hydroxyaluminium intercalated montmorillonite was monitored in course of the preparation of alumina pillared montmorillonite, making possible to determine optimal temperature for the isothermal treatment of the intermediate product. Moreover, the thermal stability of alumina pillared montmorillonite porous structure was determined from the ETA data. A good agreement of ETA data and surface area, XRD patterns. DTA, and TG resulted was found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
层柱人工水热合成皂石的制备与表征(英)   总被引:5,自引:0,他引:5  
利用具有理想皂石结构的人工水热合成蒙皂石为层原料,通过与羟基聚合铝离子([Al13O4(OH)24(H2O)12]7+)交换反应合成得到了一种层柱粘土。实验对于该铝柱皂石进行了粉末XRD,FT-IR和TG-DTA表征。氮气吸附实验说明其高温活化(773K,2 h)产物具有很高的BET比表面(360 m2·g-1)。相对于层柱蒙脱土,层柱皂石显示了更高的催化裂解性能和热稳定性。层柱皂石的异丙苯裂解转化率达到了65%;而层柱蒙脱土的转化率只有4%。这说明层材料的四面体取代对于层柱粘土Br?nsted酸位的形成具有重要的决定作用。氨程序升温脱附实验发现铝柱皂石在350~650 ℃区间具有较强的氨脱附量,表明层柱皂石具有层柱蒙脱土所没有的强酸中心。  相似文献   

6.
Controlled gas adsorption properties of various pillared clays   总被引:1,自引:0,他引:1  
Microporous pillared clays (PILC) were prepared by the intercalation of montmorillonite with particles of titania (Ti-PILC), zirconia (Zr-PILC), alumina (Al-PILC), iron oxide (Fe-PILC) and mixed lanthania/alumina (LaAl-PILC). Nitrogen adsorption isotherms (77 K) and XRD data provided information on the porosity, surface area, micropore volume and interlayer distance of these samples. The surface area varied between 198 and 266 m2/g for Ti- and Fe-PILC, respectively. The titania pillared clay had also the highest micropore volume (0.142 cc/g) and interlayer spacing (16–20 Å), compared to the Zr-PILC, which had the smallest spacing between the layers (max, 4 Å). Despite this fact, Zr-PILC always showed a high adsorption capacity for gases such as N2, O2, Ar or CO2, due to its high adsorption field in the very small micropores.From gas adsorption experiments on these various PILCs, it became clear that their adsorption properties depend on the pillars in three ways: (i) the pillar height, (ii) the distribution of the pillars between the clay layers and (iii) the nature of the pillaring species.The incorporation of other elements in the pillars leads to specific adsorption sites in the pores. This was demonstrated by the preparation of mixed Fe/Cr and Fe/Zr pillared clays. Compared to the parent Fe-PILC, the incorporation of chromium and zirconium in the iron oxide pillars had a positive influence on the adsorption capacity. Also the modification of a PILC with cations increases both capacity and selectivity for gases. This was confirmed by the increased adsorption of N2, O2 and CO2 at 273 K on a Sr2+ exchanged Al-PILC.  相似文献   

7.
A. Gil 《Adsorption》1998,4(3-4):197-206
The micropore structure of four microporous materials (two zeolites, ZSM-5 and Y-82; an activated carbon and an alumina pillared clay) and their binary physical mixtures (50-50 wt%) have been examined by nitrogen adsorption at 77 K. Various micropore sizes have been considered from the stages on the micropore filling mechanism in the microporous materials. The application of the Dubinin-Astakhov (DA) equation to characterize and obtain the adsorption potential distributions of the microporous materials is presented.  相似文献   

8.
Separation of carbon dioxide and methane is an important issue in upgrading low-quality natural gas. Adsorption equilibria and kinetics of CO(2) and CH(4) on a copper metal-organic framework (MOF), Cu(hfipbb)(H(2)hfipbb)(0.5) [H(2)hfipbb=4,4'-(hexafluoroisopropylidene) bis(benzoic acid)], were investigated to evaluate the feasibility of removing CO(2) from CH(4) in a pressure swing adsorption process using this new MOF adsorbent. The heat of adsorption of CO(2) on the Cu-MOF at zero-coverage (29.7 kJ/mol) is much lower than those on a carbon molecular sieve and a zeolite 5A adsorbent; and the heat of adsorption of CH(4) on the Cu-MOF (21.4 kJ/mol) is similar to that on the zeolite 5A adsorbent and smaller than that on a carbon molecular sieve. The Cu-MOF being investigated has apertures of (~3.5 × 3.5 ?), which favors the kinetically controlled separation of CO(2) and CH(4). The kinetic selectivity is found to be 26 at 298 K, and the overall selectivity (combining the equilibrium and kinetic effects) is about 25 for an adsorption separation process. These results suggest that the Cu-MOF adsorbent is an attractive alternative adsorbent for the CO(2)/CH(4) separation.  相似文献   

9.
The intercalation of 4-phenylazoaniline (PAA) in supercritical carbon dioxide (SC-CO(2)) into montmorillonite (TMA-Mnt) pillared with tetramethylammonium ions at 313 K and 15 MPa was investigated. The adsorption rate and equilibrium PAA uptake were compared with those in n-hexane, CCl(4) and benzene solutions at 313 K. The XRD and N(2) adsorption/desorption analyses showed that TMA-Mnt after adsorption of PAA in SC-CO(2) had the same pore structure as after adsorption of PAA in normal solvents. SC-CO(2) was found to be a good medium for PAA adsorption owing to its having a relatively high adsorption rate and the highest adsorptivity at the same PAA concentration. The properties of PAA adsorption on TMA-Mnt could be well elucidated by the difference in solubility parameters between liquid and solid phases.  相似文献   

10.
A new method for the characterization of the pore size distribution of microporous solids is applied on data obtained for activated carbon molecular sieve samples. In this method, based on the Dubinin-Astakhov equation, a simple numerical algorithm is used for the reconstruction of the micropore size distribution from the integral equation that represents the experimental nitrogen adsorption isotherm. The results are compared with the ones obtained on the basis of the well-known Horvath-Kawazoe method. The samples used in this study come from a carbon molecular sieve that has been treated with solutions of concentrated HNO3 at various temperatures and with solutions of H2O2 of various concentrations.  相似文献   

11.
TiO2 pillared montmorillonites were prepared by introducing Ti4+ into a layer of montmorillonite modified with or without cetyltrimethylammonium bromide. The components and texture of the prepared composites were characterized by thermogravimetric analysis, X-ray powder diffraction and scanning electron misroscopy. The adsorption and photocatalytic degradation performance of a model environmental endocrine disruptor, dimethyl phthalate ester, were investigated using this newly prepared hydrophobic TiO2 pillared montmorillonite photocatalyst. The adsorption of dimethyl phthalate ester from water varied from 9% to 28% on the prepared hydrophobic photocatalyst. Although the experimental results showed that the photocatalytic activity of the hydrophobic photocatalyst was slightly lower than that of hydrophilic one, electron spin resonance verified that hydroxyl radicals were also generated in hydrophobic TiO2 pillared montmorillonite photocatalyst under UV irradiation. To elucidate the decomposition mechanism of dimethyl phthalate ester, 12 main photocatalytic intermediates were identified during the photocatalytic degradation process, and a plausible degradation mechanism was also proposed.  相似文献   

12.
Adsorption and desorption of H(2) and D(2) from porous carbon materials, such as activated carbon at 77 K, are usually fully reversible with very rapid adsorption/desorption kinetics. The adsorption and desorption of H(2) and D(2) at 77 K on a carbon molecular sieve (Takeda 3A), where the kinetic selectivity was incorporated by carbon deposition, and a carbon, where the pore structure was modified by thermal annealing to give similar pore structure characteristics to the carbon molecular sieve substrate, were studied. The D(2) adsorption and desorption kinetics were significantly faster (up to x1.9) than the corresponding H(2) kinetics for specific pressure increments/decrements. This represents the first experimental observation of kinetic isotope quantum molecular sieving in porous materials due to the larger zero-point energy for the lighter H(2), resulting in slower adsorption/desorption kinetics compared with the heavier D(2). The results are discussed in terms of the adsorption mechanism.  相似文献   

13.
为了改善氧化钛层柱蒙脱石的结构性能,以长链聚合物-端氨基聚甲基环氧乙烷(PPO-D-2000)为结构调节剂,调控合成了聚合物-氧化钛层柱蒙脱石材料。采用X射线粉末衍射、红外、拉曼光谱、TG/DSC、TEM和BET等手段进行了结构表征。结果表明,相比于小分子量表面活性剂而言,长链聚合物不仅能显著提高氧化钛层柱蒙脱石中的二氧化钛含量,而且比表面积比单独氧化钛柱撑蒙脱石增加了约13%,达到241.52m2/g,尤其是孔径、孔体积等孔道结构参数增加一倍左右。将合成的柱撑蒙脱石材料应用于对水中甲基橙的吸附和光催化性能研究表明,聚合物的调控作用能提高氧化钛层柱蒙脱石的吸附能力,光催化效率也有所改善。因此,聚合物对优化无机层柱粘土材料结构、改善吸附和催化性能具有良好的调控作用,为发展环境催化材料提供了新的途径。  相似文献   

14.
层柱状微孔材料吸附存储天然气的Monte Carlo模拟   总被引:4,自引:0,他引:4  
采用巨正则系综MonteCarlo方法模拟了天然气中主要成分甲烷在层柱状微孔材料中T=300K下的吸附存储,在模拟中层柱状微孔采用Yi等人建立的柱子均匀分布在两炭孔墙之间的模型来表征。甲烷分子采用Lennard-Jones球型分子模型,炭孔墙采用Steele的10-4-3模型,对孔宽为1.36nm的层柱微孔,模拟了四个不同孔率的层柱材料吸附甲烷的情形。得到了孔中流体的局部密度分布以及吸附等温线,对比不同孔率下甲烷的吸附量,得到了此情形吸附甲烷的较佳孔率为0.94。  相似文献   

15.
The adsorption of two pesticides (2,4-phenoxy acetic acid (2,4D) and thiabendazol) on silica, alumina, kaolin and montmorillonite is studied from adsorption isotherms and enthalpies. 2,4D is not adsorbed by silica, kaolinite and montmorillonite even in the presence of 0.01 mol l?1 divalent cations. On alumina, the energy of adsorption is comparable with that of the formation of an acid-base complex. Thiabendazol can be adsorbed on silica and clays from an ethanol solution. Most adsorption isotherms are of the Langmuir type and correspond to roughly constant adsorption enthalpies as a function of coverage except for kaolin where adsorption on both lateral and basal faces can be involved. Adsorption after introducing humic acids to the system was also studied for kaolin.  相似文献   

16.
氨基酸在固/液界面的吸附作用   总被引:7,自引:0,他引:7  
赵振国 《化学研究与应用》2001,13(6):599-604,610
本文介绍了氨基酸在固/液界面吸附等温线的特点,氨基酸液相吸附热力学和活性炭、硅胶、二氧化钛、氧化铝、蒙脱土等自水中吸附氨基酸的机制。  相似文献   

17.
The adsorption isotherms of Cr(VI) on kaolinite, montmorillonite, and alumina were adequately treated with Langmuir model showing behavior characteristic of single-layer adsorption. The efficiency of the adsorbents in removing Cr(VI) from water follows the order alumina > kaolinite > montmorillonite > silica. Speciation studies indicate that hydrogen chromate ions were the major adsorbed species and simultaneous adsorption of dichromate ion occurred at concentrations greater than approximately 10(-3) mol L(-1). It is most probable that the mechanism of adsorption of the hydrogen chromate ion at the surface of alumina is predominantly electrostatic adsorption, with outer sphere complex formation.  相似文献   

18.
The microstructure of a carbon molecular sieve membrane (CMSM) is characterized using adsorption equilibrium information. The pore size distributions of the CMSM derived from N2 and CH4 adsorption isotherm are found to be consistent with each other and in agreement with the results of gas permeation experiments as well as the general characteristics of such molecular sieve materials.  相似文献   

19.
《Microporous Materials》1997,8(3-4):177-186
A systematic investigation has been undertaken for tailoring the micropore structure of the pillared clay. Besides the type of metal oxide (e.g. Al2O3 vs. ZrO2) being used as the pillars, the important factors for determining the micropore structure are OH/Al ratio (for Al2O3-pillared clay), calcination temperature and the starting clay. The effect of the cation exchange capacity (CEC) of the clay on the microporous structure (and consequently the adsorption properties) is reported for the first time. Two clays with widely different CECs are used: Arizona montmorillonite (CEC = 1.40 mequiv./g) and Wyoming montmorillonite (CEC = 0.76 mequiv./g). The interlayer spacings of the pillared clays from these different clays are essentially the same, since the interlayer spacing is controlled by the sizes of the oligomers that intercalate between the clay layers. However, the pillar density in the pillared clay is substantially higher with a high CEC in the starting clay, and is shown to be approximately proportional to the CEC. Consequently, the interpillar spacing is substantially lower resulting from the higher CEC. The CH4 adsorption on the pillared clay is nearly doubled by the smaller interpillar spacing, due to the back-to-back overlapping potential in the micropores. The N2 adsorption was not significantly influenced because of its low polarizability (hence low inductive potential). Increasing the calcination temperature of the Al2O3-pillared clay from 400°C to 600°C can decrease the interlayer spacing, but only by 1 (from 8.7 to 7.7 ). The CH4/N2 adsorption ratio of 2.35 is reached on the Al2O3-pillared Arizona clay that is calcined at 600°C. Finally, the surface and pore volume are influenced by the OH/Al ratio (or pH) during pillaring, since this ratio determines the size and charge of the oligomers. A peak surface area is reached at OH/Al = 2.2.  相似文献   

20.
N2 adsorption isotherms of molecular sieve carbon were measured at 77 K and 303 K. The Ar adsorption isotherms of molecular sieve carbon samples were also measured at 303 K. The grand canonical Monte Carlo (GCMC) simulation technique was applied to calculate the N2 and Ar adsorption isotherms at 303 K using the ultramicropore volume determined by H2O adsorption. The comparative method of experimental and simulated isotherms of supercritical N2 and Ar at 303 K gave the width of the micropore mouth of the molecular sieve carbon, which can be applied to the ultramicropore width determination for other noncrystalline porous solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号