首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
室温下用80keVN离子注入ZnO薄膜样品,注量分别为5.01014,5.01015和5.01016ions/cm2,然后用X射线衍射和透射电镜技术对样品的结构特性进行了表征。实验结果表明,由高度(002)择优取向的致密柱状晶构成的薄膜中,注入5.0×1015ions/cm2时,观测到缺陷生成和局域无序化现象,但薄膜总体结构仍保持柱状晶和(002)择优取向;随着注量的增大,晶格常数c和压应力呈增大趋势。对注入N离子对ZnO薄膜结构特性的影响机理进行了简单的讨论。  相似文献   

2.
采用射频磁控溅射法在Si衬底上制备了高c轴择优取向的ZnO薄膜,研究了退火对ZnO薄膜的晶粒尺度和发光光谱的影响。XRD结果显示退火可以改善ZnO薄膜的结构特性,PL谱结果显示退火对ZnO薄膜的发光强度产生很大影响。  相似文献   

3.
MgxZn1-xO单晶薄膜的结构和光学性质   总被引:1,自引:0,他引:1  
用等离子辅助分子束外延(P-MBE)的方法,在蓝宝石c平面上外延生长了MgxZn1-xO合金薄膜。在0≤x≤0.2范围内薄膜保持着ZnO的纤锌矿结构不变。X射线双晶衍射谱的结果表明生长的样品是单晶薄膜。据布喇格衍射公式计算得到,随着Mg含量的增加,薄膜的品格常数C由0.5205nm减小到0.5185nm。室温光致发光谱出现很强的紫外近带发射(NBE)峰,没有观察到深能级(DL)发射,且随着Mg的掺入量的增加,紫外发射峰有明显的蓝移。透射光谱的结果表明,合金薄膜的吸收边随着Mg离子的掺入逐渐向高能侧移动,这与室温下光致发光的结果是相吻合的,并计算出随着x值增加,带隙宽度从3.338eV逐渐展宽到3.682eV。通过研究Mg0.12Zn0.88O样品的变温光谱,将紫外发射归结为束缚在施主能级上的束缚激子发射。并详细地研究了在整个温度变化过程中,束缚激子的两个不同的猝灭过程以及谱线的半峰全宽与温度变化的关系。  相似文献   

4.
在200 ℃下利用激光沉积技术分别在玻璃和Si(100)上沉积制备了ZnS薄膜,并在300,400,500 ℃下退火1 h。用X射线衍射(XRD)仪、紫外/可见光/近红外分光光度计、台阶仪和原子力显微镜(AFM)分别对不同衬底上样品的特征进行了观察。结果表明,玻璃上的ZnS薄膜只在28.5°附近存在着(111)方向的高度取向生长。在可见光范围内透射率为60%~90%。计算显示薄膜的光学带隙在3.46~3.53 eV之间,其小于体材料带隙的原因在于硫元素的缺失。根据光学带隙判断薄膜是单晶立方结构的β-ZnS。Si(100)上生长的是多晶ZnS薄膜:500 ℃下退火后,表面也比未退火表面更加平整致密,变化规律与ZnS/glass的类似。说明高温下退火可以有效地促进晶粒的结合并改善薄膜质量。  相似文献   

5.
通过热氧化氟化锌(ZnF2)薄膜的方法制备出氟掺杂的多晶ZnO薄膜,ZnF2薄膜是利用电子束蒸发方法沉积在Si(100)衬底得到的。利用X射线衍射和X射线电子能谱研究了ZnF2薄膜向ZnO的转变过程。实验结果表明,在400℃退火30min的条件下能够获得六方纤锌矿结构的ZnO:F薄膜。对ZnO:F薄膜的室温光致发光谱可以观察到位于379nm、半峰全宽为73meV的紫外发射峰,而相应于缺陷的深能级发射则完全猝灭。表明ZnO中残留的F能够有效地增强激子的发光,同时使缺陷发光强度明显降低。对F掺杂对ZnO的发光性能的影响进行了讨论。  相似文献   

6.
采用低压金属有机化学气相沉积(LP-MOCVD)技术,在普通石英衬底上制备出不同Cd组分(0.02,0.44,0.59,0.83,0.91)的Zn1-xCdxS合金薄膜材料。X射线测量表明样品为单一取向的纤锌矿结构,并且随着x的增加衍射峰位基本成线性地从ZnS衍射峰向CdS衍射峰移动。此外,在PL谱中还可以看出随着样品中Cd含量的增加,发光峰从3.66eV红移到2.43eV。根据发光峰位与Zn1-xCdxS中x的变化关系,推导出它们之间的关系近似为Eg(Zn1-xCdxS)=3.61-1.56x 0.38x^2。还探讨了不同Cd组分薄膜材料的X射线衍射峰半峰全宽以及发光峰半峰全宽的变化。  相似文献   

7.
利用脉冲激光沉积的方法在Si衬底上生长出了c轴高度取向的Mn掺杂ZnO薄膜.X射线衍射表明所有样品都具有纤锌矿结构,没有发现其它相,随着掺杂量的增加,c轴晶格常数增大.原子力显微镜结果显示:Mn的掺杂引起了ZnO薄膜表面粗糙度的变化.由光致发光谱发现,在387 nm附近出现了由于近带边自由激子复合引起的紫外峰,还有以4...  相似文献   

8.
Zn离子注入和退火对ZnO薄膜光学性能的影响   总被引:1,自引:2,他引:1       下载免费PDF全文
 利用溶胶凝胶方法在石英玻璃衬底上制备了ZnO薄膜,将能量56 keV、剂量1×1017 cm-2的Zn离子注入到薄膜中。离子注入后,薄膜在500~900 ℃的氩气中退火,利用X射线衍射谱、光致发光谱和光吸收谱研究了离子注入和退火对ZnO薄膜结构和光学性质的影响。结果显示:衍射峰在约700 ℃退火后得到恢复;当退火温度小于600 ℃时,吸收边随着退火温度的提高发生蓝移,超过600 ℃时,吸收边随着退火温度的提高发生红移;近带边激子发光和深能级缺陷发光都随退火温度的提高而增强。  相似文献   

9.
用脉冲激光沉积(PLD)的方法在多孔硅衬底上沉积了ZnS薄膜,并在室温下研究了ZnS/PS异质结的结构、光学和电学性质。X射线衍射仪(XRD)测量结果表明.制备的ZnS薄膜在28.5°附近有一较强的衍射峰,对应于β-ZnS(111)晶向,说明薄膜沿该方向高度择优取向生长。ZnS/PS复合体系的光致发光谱表明,ZnS的发光与PS的发光叠加在一起,在可见光区形成一个450-700nm较宽的光致发光谱带。呈现较强的白光发射。对ZnS/PS异质结I-V,特性曲线的测量结果表明,异质结呈现出与普通二极管相似的整流特性。在正向偏置下,电流密度较大.电压降较低;在反向偏置下,电流密度接近于零。异质结的理想因子的值为77。  相似文献   

10.
张增院  郜小勇  冯红亮  马姣民  卢景霄 《物理学报》2011,60(1):16110-016110
利用直流磁控反应溅射技术,通过调节反应气压(RP),在250 ℃衬底温度下制备了一系列氧化银 (AgxO) 薄膜,并利用X射线衍射谱、能量色散谱和分光光度计重点研究了RP对AgxO薄膜的结构和光学性质的影响. 研究结果表明,随着RP从0.5 Pa升高到3.5 Pa,薄膜明显呈现了从两相(AgO+Ag2O)到单相(Ag2O)结构再到两相(Ag2O+AgO)结构的演变. 特 关键词: 氧化银薄膜 直流磁控反应溅射 X射线衍射谱 光学性质  相似文献   

11.
N-ion-implantation to a fluence of 1×1015ions/cm2was performed on ZnS thin films deposited on glass substrates by using the vacuum evaporation method. The films were annealed in flowing nitrogen at 400?C–500?C after N-ionimplantation to repair the ion-beam-induced structural destruction and electrically activate the dopants. Effects of ionimplantation and post-thermal annealing on ZnS films were investigated by X-ray diffraction(XRD), photoluminescence(PL), optical transmittance, and electrical measurements. Results showed that the diffraction peaks and PL intensities were decreased by N-ion-implantation, but fully recovered by further annealing at 500?C. In this experiment, all films exhibited high resistivity due to the partial dopant activation under 500?C.  相似文献   

12.
This paper reports that ion implantation to a dose of 1×1017 ions/cm2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600-900℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600-900℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600- 750℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at \sim 850℃ and \sim 750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900℃.  相似文献   

13.
ZnO thin films were synthesised by a new method which uses polyvinyl alcohol (PVA) as the polymer precursor. The films are annealed at different temperatures and for different annealing times. The structural parameters, like grain size, lattice constants, optical band gap, and Urbach energy, depend on the annealing temperature and time. All the films possess tensile strain, which relaxes as the annealing temperature and time increase. The photoluminescence (PL) spectra contain only ultraviolet (UV) peaks at low temperature, but as the annealing temperature and time increase, we observe peaks at the blue and green regions with a variation in the intensities of these peaks with annealing temperature and time.  相似文献   

14.
ZnO thin films were synthesised by a new method which uses polyvinyl alcohol (PVA) as the polymer precursor. The films are annealed at different temperatures and for different annealing times. The structural parameters, like grain size, lattice constants, optical band gap, and Urbach energy, depend on the annealing temperature and time. All the films possess tensile strain, which relaxes as the annealing temperature and time increase. The photoluminescence (PL) spectra contain only ultraviolet (UV) peaks at low temperature, but as the annealing temperature and time increase, we observe peaks at the blue and green regions with a variation in the intensities of these peaks with annealing temperature and time.  相似文献   

15.
彭丽萍  方亮  吴卫东  王雪敏  李丽 《中国物理 B》2012,21(4):47305-047305
Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temper- ature. The as-deposited films are annealed at different temperatures from 400 C to 800 C in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400 C to 800 C. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400 C. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400 C to 800 C.  相似文献   

16.
Zinc Selenide (ZnSe) thin films were deposited onto well cleaned glass substrates using vacuum evaporation technique under a vacuum of 3×10−5 mbar. The prepared ZnSe samples were implanted with mass analyzed 75 keV B+ ions at different doses ranging from 1012 to 1016 ions cm−2. The composition, thickness, microstructures, surface roughness and optical band gap of the as-deposited and boron-implanted films were studied by Rutherford backscattering (RBS), grazing incidence X-ray diffraction, Atomic force microscopy, Raman scattering and transmittance measurements. The RBS analysis indicates that the composition of the as-deposited and boron-implanted films is nearly stoichiometric. The thickness of the as-deposited film is calculated as 230 nm. The structure of the as-deposited and boron-implanted thin films is cubic. It is found that the surface roughness increases on increasing the dose of boron ions. In the optical studies, the optical band gap value decreases with an increase of boron concentration. In the electrical studies, the prepared device gave a very good response in the blue wavelength region.  相似文献   

17.
We have studied photoluminescence (PL) spectrum and dynamics of Cu- and Al-doped ZnS (ZnS:Cu,Al) nanocrystals fabricated by sequential implantation of Zn+, S+, Cu+, and Al+ ions into Al2O3 matrices. These samples exhibit intense green PL under UV light excitation. The space- and time-resolved PL measurements show that the broad green PL is due to the donor–acceptor (DA) pair luminescence of single ZnS:Cu,Al nanocrystals.  相似文献   

18.
Transparent conducting oxide (TCO) thin films such as SnO2, In2O3, and Cd2SnO4, have been used extensively as sensor devices, surface acoustic wave devices, coating to heat glass windows and transparent electrodes for solid state display devices, solar cells[1,2] because of their high optical transparency in the visible range, infrared reflec-tance and low d.c. resistivity. Although SnO2 film was developed early, nowadays Sn-doped In2O3 (ITO) films are the predominant TCO thin film in …  相似文献   

19.
ZnS/MnS super lattice thin films were grown on glass substrates by Chemical Bath Deposition technique. Equimolar aqueous solutions of ZnCl2:thiourea and MnCl2·2H2O:thiourea were taken separately. The substrates were placed vertically in the beakers containing the precursor described above, and the films are deposited at 85 °C for an hour. The as deposited films are annealed at 200 °C for about two hours. X-ray diffractometry method was used to obtain structural characterization. The UV–vis absorption spectrometry was employed to find the optical properties. The refractive-index, dielectric constant, optical conductivity, electrical conductivity and extinction coefficient were determined by various equations based on the data. The valence band and conduction band offset voltages for ZnS/MnS were determined as 0.7 eV and 0.1 eV respectively and for MnS/ZnS were 0.4 eV and 0.3 eV respectively. The band alignment of both superlattice was found to be as Type I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号