首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
Extraction of Hg(II), Se(IV), Mn(II) and Co(II) has been carried out with 1-phenyl-3-methyl-4-trifluoroacetyl-2-pyrazolin-5-one (HPMTFP) and triphenylphosphine oxide (TPPO) into chloroform from pH 1–10. Quantitative extraction of Hg(II), Mn(II) and Co(II) at pH 4 with equimolar 0.05M (PMTFP+TPPO) in chloroform was observed. Se(IV) remains unextracted at this pH range. The stoichiometric composition of the extracted complexes M(PMTFP)2·nH2O (M=Mn, Hg), M(PMTFP)2·2TPPO (M=Mn and Co) and Co(PMTFP)2·TPPO·H2O at less than 0.1M TPPO has been established. The formation constantsK m,0 andK m,n and stability constants m,n have been computed. The analytical method developed was applied to the IAEA standard reference material (SRM) potato fluor V-4 for the determination of these elements using NAA technique.  相似文献   

2.
The 1,10-phenanthroline (phen) complexes of Co(II), Ni(II), Cu(II) and Cd(II) orotates were synthesized and characterized by elemental analysis, magnetic susceptibility, spectral methods (UV-vis and FTIR) and thermal analysis techniques (TG, DTG and DTA). The Co(II), Ni(II), Cu(II) and Cd(II) ions in diaquabis(1,10-phenanthroline)metal(II) diorotate octahedral complexes [M(H2O)2(phen)2](H2Or)2·nH2O (M=Co(II), n=2.25; Ni(II), n=3; Cu(II) and Cd(II), n=2) are coordinated by two aqua ligands and two moles of phen molecules as chelating ligands through their two nitrogen atoms. The monoanionic orotate behaves as a counter ion in the complexes. On the basis of the first DTGmax, the thermal stability of the hydrated complexes follows the order: Cd(II), 68°C 68°C  相似文献   

3.
New complexes of Co(II), Ni(II), and Cu(II) with 1-(4-hydroxyphenyl)-1H-1,2,4-triazole (L) of the composition ML2(H2O)2(NO3)2 · nH2O (M = Co(II), n = 3; M = Ni(II), n = 0; M = Cu(II), n = 0) were synthesized and studied by photoelectron and IR spectroscopy, magnetochemistry, thermogravimetry, and X-ray powder diffraction analysis. The type of eff(T) relationship suggests that paramagnetic centers in the Co(II) chloride and Cu(II) nitrate and bromide complexes are involved in antiferromagnetic exchange interactions. The exchange energy values were estimated by the molecular field method.  相似文献   

4.
Abstract

It was found that each of the tetrakis(n-alkyldithiolato)dinickel(II), (Cn-DTA)4-Ni2, complexes where n-alkyl is n-pentyl through n-dodecyl, exhibits a broken-fan texture on cooling from an isotropic liquid, and that the phase gave a characteristic lamella structure X-ray diffraction powder pattern. Furthermore, the infrared spectrum of this phase is more similar to that of the isotropic liquid than that of the crystal. Therefore, the phase can be described as a monotropic lamella mesophase. Interestingly, each of the complexes of bis(n-alkylxanthato)nickel(II), (Cn-Xan)2Ni, (n = 5, 7, 9, 11) exhibits double (triple) melting behavior via the isotropic liquid, whereas each of the complexes of (Cn-Xan)2Ni (n = 4, 6, 8, 10, 12) shows ordinary single melting behavior. Such unique double melting accompanied by an even-odd effect appears to be the first example of this in the long chain substituted compounds. Each of the complexes of (Cn-Xan)2 Ni (n = 9, 11, 12) has a monotropic lamella mesophase exhibiting a large broken fan texture.  相似文献   

5.
Varinder Kaur 《Talanta》2007,73(3):425-430
A new approach for the analysis of Co(II), Ni(II) and Pd(II) as morpholine-4-carbodithioate (MDTC) complexes in aqueous medium by using solid phase microextraction (SPME)-high performance liquid chromatography (HPLC)-UV has been developed. The method involves sorption of metal complexes on PDMS fiber from aqueous solution followed by desorption in the desorption chamber of SPME-HPLC interface using acetonitrile:water (60:40) as mobile phase. A good separation of metal complexes is achieved on C18 column. The detection limits of Co(II), Ni(II) and Pd(II) are 0.17, 0.11 and 0.06 ng ml−1, respectively. These can be determined by the proposed method without interference from other common metal ions such as Mo(VI), V(V), Ag(I), Sn(IV), Cd(II), Pb(II), Zn(II), Ag(I), Sn(II), Cr(III) and Cr(VI). The method was applied to the determination of these metals in different alloy samples and drinking water sample.  相似文献   

6.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The cobalt, nickel, copper and zinc atoms in bis(1,10-phenanthroline)bis(salicylato-O)metal(II) monomeric octahedral complexes [M(Hsal)2(phen)2nH2O, (M: Co(II), n=1; Cu(II), n=1.5 and Ni(II), Zn(II), n=2) are coordinated by the salicylato monoanion (Hsal) through the carboxyl oxygen in a monodentate fashion and by the 1,10-phenanthroline (phen) molecule through the two amine nitrogen atoms in a bidentate chelating manner. On the basis of the DTGmax, the thermal stability of the hydrated complexes follows order: Ni(II) (149°C)>Co(II) (134°C)>Zn(II) (132°C)>Cu(II) (68°C) in static air atmosphere. In the second stage, the pyrolysis of the anhydrous complexes takes place. The third stage of decomposition is associated with a strong exothermic oxidation process (DTA curves: 410, 453, 500 and 450°C for the Co(II), Ni(II), Cu(II) and Zn(II) complexes, respectively). The final decomposition products, namely CoO, NiO, CuO and ZnO, were identified by IR spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The triethanolamine complexes, [M(tea)2]sq·nH2O, (n=2 for Co(II), n=0 for Ni(II), Cu(II) and n=1 for Cd(II), tea=triethanolamine, sq2−=squarate), have been synthesized and characterized by elemental analyses, magnetic susceptibility and conductivity measurements, UV-Vis and IR spectra, and thermal analyses techniques (TG, DTG and DTA). The Co(II), Ni(II) and Cu(II) complexes possess octahedral geometry, while the Cd(II) complex is monocapped trigonal prismatic geometry. Dianionic squarate behaves as a counter ion in the complexes. The thermal decomposition of these complexes takes place in three stages: (i) dehydration, (ii) release of the tea ligands and (iii) burning of organic residue. On the basis of the first DTGmax of the decomposition, the thermal stability of the anhydrous complexes follows the order: Ni(II), 289°C>Co(II), 230°C>Cu(II), 226°C>Cu(II), 170°C in static air atmosphere. The final decomposition products — the respective metal oxides — were identified by FTIR spectroscopy.  相似文献   

9.
The liquid-liquid extraction behavior of Hg(II) from aqueous acidic chloride solutions has been investigated by tracer techniques using dialkylsulphides (R2S) namely, dibutylsulphide (DBS) and dioctylsulphide (DOS) as extractants. These extraction data have been analyzed by both graphical and theoretical methods by taking into account complexation of the metal ion in the aqueous phase with inorganic ligands and all plausible complexes extracted into the organic phase. The results clearly indicate that Hg(II) is extracted into xylene as HgCl2 . nDBS/nDOS (where n = 2 and 3). The equilibrium constants of the extracted complexes have been deduced by non-linear regression analysis. The separation possibilities of Hg(II) from other metal ions viz. Ca(II), Mg(II), Ba(II) and Fe((III), which are present in the industrial wastes of the chlor-alkali industry has also been discussed.  相似文献   

10.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.

The first 2-pyridylethanol (pyet) complexes of manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) saccharinates, were synthesized and characterized by elemental analyses, magnetic measurements, UV-Vis, and IR spectroscopic techniques. Crystal and molecular structures of the iron(II) and copper(II) complexes were determined by single crystal X-ray diffractometry. The experimental data showed that all the complexes are mononuclear with a general formula [M(H2O)2(pyet)2](sac)2, where sac is the saccharinate anion. All the metal ions are octahedrally coordinated by two aqua and two pyet ligands. The pyet ligand acts as a bidentate ligand through its amine nitrogen and hydroxyl oxygen atoms forming a six-membered chelate ring, while the sac ions remain outside the coordination sphere. All the complexes are isomorphous with a monoclinic space group P21/n and Z = 2.  相似文献   

12.
New homologous series of coumarin Schiff base derived from 6-aminocoumarin and their zinc(II) complexes have been synthesised. The spectroscopic characterisations, photophysical properties, phase transition temperature, characterisation of phase and gelation behaviour are reported. The ligand is non-mesogenic at lower 4-n-alkoxy chain length (n = 4) and mesogenic for longer chains (n > 4). For small chains (n = 5, 7, 8), ligand displays monotropic nematic or nematic-smectic A phase sequences, whereas longer homologues (n = 12, 14, 16 and 18) display only enantiotropic smectic A phase. The ligands and their Zn(II) complexes are fluorescent in nature. Interestingly, ligands exhibit gelation property only in polar solvents, whereas Zn(II) complexes discourage gelation. The effect of 4-n-alkoxy chain length on the gelation properties was also discussed. Density functional theory calculations show broad agreement with observed molecular conformation, dipole moment, molecular orbitals and polarisability of the coumarin Schiff base molecules and their Zn(II) complexes.  相似文献   

13.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n-butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N*) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC*) mesophase. The metal complexes with n-butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N* phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C* phase of the two ligands.  相似文献   

14.
Summary Metal(II) chelates of Schiff bases derived from the condensation of 1,2,3,5,6,7,8,8a-octahydro-3-oxo-N,1-diphenyl-5-(phenylmethylene)-2-naphthalenecarboxamide with o-aminophenol (KAAP), o-aminothiophenol (KAAT) or o-aminobenzoic acid (KAAB) have been prepared and characterized. The complexes are of the type [M(N2X)]2 for M = CuII and M(NX)2·nH2O for M = NiII, CoII and VOII (X = phenolic oxygen, thiophenolic sulphur or carboxylic oxygen; n = 0 or 2). Conductivity data indicate that the complexes are non-ionic. The Schiff bases behave as dibasic tridentate ligands in their copper(II) complexes and as monobasic bidentate ligands in their nickel(II), cobalt(II) and vanadyl(II) complexes. The subnormal magnetic moments of the copper(II) complexes are ascribed to an antiferromagnetic exchange interaction arising from dimerization. Nickel(II) and cobalt(II) complexes are trans octahedral whereas vanadyl(II) complexes are square pyramidal  相似文献   

15.
The reactions of Co(II), Ni(II), and Cu(II) chlorides and bromides and their metallic powders with tetrazol-1-yl-tris(hydroxymethyl)methane (L) afforded new complexes ML2Hal2 · mH2O(M = Co(II) or Ni(II), Hal = Cl; M = Cu(II), Hal = Cl or Br, m = 0; and M = Co(II) or Ni(II), Hal = Br, m = 2), MLnCl2 (M = Co(II) or Ni(II), n = 2 or 4; M = Cu(II), n = 2), and MLnBr2 · mH2O (M = Ni(II), n = 2, m = 2; M = Cu(II), n = 2, m = 0). The compositions and structures of the synthesized complexes were determined by elemental analysis, IR spectroscopy (50–4000 cm−1), and X-ray diffraction analysis. The introduction of a bulky substituent into position 1 of the tetrazole cycle was shown to exert almost no effect on the coordination mode but affected the composition and structure of the complexes.  相似文献   

16.
Homo and heterobinuclear complexes of arylidene- anthranilic acids with Cu(II), Ni(II) and Co(II) are prepared and characterised by chemical analysis, spectral and X-ray diffraction techniques as well as conductivity measurements. Two types of homo-binuclear complexes are formed. The first has the formula M2L2Cl2(H2O)n where M=Cu(II), Ni(II) and Co(II), L = p-hydroxybenzylideneanthranilic acid (hba), p-dimethylaminobenzylideneanthranilic acid (daba) and p-nitrobenzylideneanthranilic acid(nba) and n = 0–3. The second type has the formula M2LCl3(H2O)n in which M is the same as in the first type, L = benzylideneanthranilic acid (ba), (daba) (in cases of Cu(II) and Ni(II)); and n = 1–5. Heterobinuclear complexes having the formula (MLCl2H2O) MCl2(H2O)n are isolated by reaction of Cu(II) binary chelates with Ni(II) and/or Co(II) chlorides. These are also characterized and their structures are elucidated.  相似文献   

17.
A simple back-extraction method was developed for the separation and preconcentration of trace levels of zinc from different matrices. Ethyl-2-(4-methoxybenzoyl)-3-(4-methoxyphenyl)-3-oxopropanoylcarbamate (EMPC) was used as a new complexing agent for the extraction of zinc(II) from the aqueous sample phase to the methyl isobutyl ketone (MIBK) phase as Zn(EMPC)2 complexes. The Zn(II) can be selectively stripped with 1?mL of 0.5?mol?L?1 HCl from Mn+(EMPC)n complexes [Ag(I), Al(III), Cd(II), Cr(III), Cu(II), Fe(II), Fe(III), Mn(II), Ni(II), Pb(II) and Pd(II)] which dissolved in MIBK phase. Some experimental parameters, which are important for the whole extraction process, including pH, sample volume, shaking time, amount of the EMPC reagent, amount of MIBK, ionic strength, and type of back-extractant were investigated. The recovery for Zn(II) was greater than 95%. The detection limit of the method was found to be 0.2?µg?L ? 1 and the relative standard deviation as 6.4%. The concentrations of Zn(II) in the certified reference materials (LGC6019 river water and NIST-1547 peach leaves) by the presented method were in good agreement with the certified values. The proposed method was succesfully applied to the determination of zinc in some natural waters, rice, hair, soil, and tea samples.  相似文献   

18.
A novel analytical approach is described that combines the preconcentration power of solvent extraction with the resolution and sensitivity of a 500 MHz 1H NMR spectroscopic detection method for the quantitative determination of metals. Co(II), Cr(VI), Ni(II) and Pb(II) in water are extracted into chloroform as dithiocarbamate complexes. By decoupling the protons and employing a solvent-induced shift method, the 1H NMR spectrum containing the dithiocarbamate complexes of Co(II), Cr(VI), Ni(II) and Pb(II) is fully resolved at CDCl3/ C6D6 below 40%/60%. The detection limits for Co(II), Cr(VI), Ni(II) and Pb(II) are estimated to be 0.12, 0.073, 0.11 and 0.27 μg/mL, respectively, in the sample solution.  相似文献   

19.
Four new mixed ligand complexes were prepared by the reaction of title metal dichloroacetates and 2,4'-bipyridine. The general formulae of synthesized compounds are M(2,4'-bpy)2(CCl2HCOO)2·nH2O (where M(II)=Mn, Co, Ni, Cu; 2,4'-bpy=2,4'-bipyridine, n=2 or 4). The complexes have been isolated from aqueous media and characterized by chemical analysis, molar conductance (in MeOH, DMSO and DMF), magnetic, IR and VIS spectral studies. The nature of metal(II)-ligand coordination is discussed. The thermal behaviour of obtained complexes was studied by thermal analysis and TG-MS techniques in air. IR, X-ray powder diffraction and thermoanalytical data were used for the determination of solid intermediate products of the thermal decomposition. The principal volatile products of thermal decomposition of complexes were proved by mass spectroscopy: H2O+, CO+ 2, HCl+ 2, Cl+ 2, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
San Andres MP  Marina ML  Vera S 《Talanta》1994,41(2):179-185
The determination of copper(II), nickel(II) and cobalt(II) was carried out as diethyldithiocarbamate (DDTC) complexes in presence of aqueous solutions of cationic surfactants of hexadecyltrimethylammonium bromide, chloride and hydroxide (CTAB, CTAC, CTAOH). The presence of micellar systems avoids the previous step of solvent extraction necessary to the formation of the DDTC complexes in absence of micelles. The influence of the different micellar counterions on the analytical characteristics (sensitivity and detection limits) of the proposed method for spectrophotometric determination of Cu(II), Ni(II) and Co(II) was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号