首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The density of states of a two-dimensional square nanosystem composed of N × N aluminum atoms (N = 3?30) is calculated in the framework of the Hubbard model. It is demonstrated that, at a small parameter N, the density of states depends substantially on the number of atoms and on the position of a particular atom in the lattice. As the parameter N increases, the density of states for the vertex and edge atoms tends to the value of the density of states for the bulk atoms. The temperature of the system is implicitly included by specifying the energy of hopping in the initial Hamiltonian.  相似文献   

3.
4.
We apply the density matrix renormalization group to study the phase diagram of the infinite U Hubbard model on 2- to 6-leg ladders. Where the results are largely insensitive to the ladder width, we consider the results representative of the 2D square lattice. We find a fully polarized ferromagnetic Fermi liquid phase when n, the density of electrons per site, is in the range 1>n?0.800. For n=3/4 we find an unexpected insulating checkerboard phase with coexisting bond-density order with 4 sites per unit cell and block-spin antiferromagnetic order with 8 sites per unit cell. For 3/4>n, all ladders with width >2 have unpolarized ground states.  相似文献   

5.
Using quantum field theory and bosonization, we determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U at half-filling, for small values of the interactions. We show that it is essential to take into account formally irrelevant terms of order X  . They generate relevant terms proportional to X2X2 in the flow of the renormalization group (RG). These terms are calculated using operator product expansions. The model shows three phases separated by a charge transition at U=UcU=Uc and a spin transition at U=Us>UcU=Us>Uc. For U<UcU<Uc singlet superconducting correlations dominate, while for U>UsU>Us, the system is in the spin-density wave phase as in the usual Hubbard model. For intermediate values Uc<U<UsUc<U<Us, the system is in a spontaneously dimerized bond-ordered wave phase, which is absent in the ordinary Hubbard model with X=0X=0. We obtain that the charge transition remains at Uc=0Uc=0 for X≠0X0. Solving the RG equations for the spin sector, we provide an analytical expression for Us(X)Us(X). The results, with only one adjustable parameter, are in excellent agreement with numerical ones for X<t/2X<t/2 where t is the hopping.  相似文献   

6.
Hubbard model in infinite dimensions   总被引:1,自引:0,他引:1  
  相似文献   

7.
The density of states and the conductivity for the two-dimensional Anderson model are calculated in the coherent-potential approximation for a square lattice. The results are compared with numerical simulation performed recently by Licciardello and Thouless. Agreement is very good for the density of states, but rather poor for the conductivity.  相似文献   

8.
We apply the modified-moments method to compute the density of states of the impurity band of a doped semi-conductor in the intermediate region of impurity concentrations. This method is used to correct the density of states obtained by interpolating between the high and low concentration limit asymptotic expressions. The calculation is based on the Hubbard model in the atomic limit without spin ordering. The overlap integral is assumed to be a Gaussian function of the impurity separation. Use is made of the first seven moments of the exact distribution and of the low and high concentration limit approximations previously calculated. The first six moments are employed to determine the orthogonal polynomial expansion of the density of states while the seventh moment is used as a check on the accuracy of the distribution obtained. The results are similar to the previous ones using a truncated Edgeworth series for the correction term but the present method has the advantage of being a more systematic approach.  相似文献   

9.
10.
For a square Hubbard lattice with infinite repulsion energy U the following exact result has been obtained: the ferromagnetic state with maximum spin is not the ground state of the system if the number of holes is equal to two. Zh. éksp. Teor. Fiz. 113, 1000–1008 (March 1998)  相似文献   

11.
12.
13.
14.
We study finite-temperature phase transitions in a two-dimensional boson Hubbard model with zero-point quantum fluctuations via Monte Carlo simulations of a quantum rotor model and construct the corresponding phase diagram. Compressibility shows a thermally activated gapped behavior in the insulating regime. Finite-size scaling of the superfluid stiffness clearly shows the nature of the Kosterlitz-Thouless transition. The transition temperature T(c) confirms a scaling relation T(c) proportional, rho(0)(x), with x=1.0. Some evidence of anomalous quantum behavior at low temperatures is presented.  相似文献   

15.
16.
A Monte-Carlo procedure is given for the two-dimensional (2-D) Hubbard model using the Suzuki-Trotter transformation. The resulting three-dimensional (3-D) classical model does not have the usual problems with negative transition probabilities in the large-U limit (U-repulsive interactions). Numerical simulations based on the algorithm described are expected to be of importance for the theory of high-T c superconductivity.  相似文献   

17.
18.
19.
20.
Spectral properties of the two-dimensional Hubbard model near the Mott transition are investigated by using cluster perturbation theory. The Mott transition is characterized by freezing of the charge degrees of freedom in a single-particle excitation that leads continuously to the magnetic excitation of the Mott insulator. Various anomalous spectral features observed in cuprate high-temperature superconductors are explained in a unified manner as properties near the Mott transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号